🗂

ScoreCardシーリズ(6)——実例:モデルの構築

2023/09/07に公開

スコアカードモデリング入門シリーズ

  1. スコアカードの由来
  2. 証拠の重さと情報価値(WOE and IV)
  3. グルーピングの方法(Grouping Method)
  4. 信頼できるAIの要素——PSI(Population Stability Index)
  5. スコアの計算
  6. 実例:モデルの構築

ソースコード:GitHub Repository

Tool explanation

Lapras Package Install
via pip

pip install lapras --upgrade -i https://pypi.org/simple
import lapras

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib as mpl
import matplotlib.pyplot as plt

pd.options.display.max_colwidth = 100
import math
%matplotlib inline
from IPython.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Read in data file

Note:Data comes from:https://www.kaggle.com/competitions/GiveMeSomeCredit/data

df_training = pd.read_csv('data/cs-training.csv',encoding="utf-8", index_col=0)
df_testing = pd.read_csv('data/cs-test.csv',encoding="utf-8", index_col=0)
to_drop = [] # exclude the features which not being used, eg:id
target = 'SeriousDlqin2yrs' # Y label name

Simple EDA(Exploratory Data Analysis)

lapras.detect(df_training)
type size missing unique mean_or_top1 std_or_top2 min_or_top3 1%_or_top4 10%_or_top5 50%_or_bottom5 75%_or_bottom4 90%_or_bottom3 99%_or_bottom2 max_or_bottom1
int64 150000 0 2 0.06684 0.249746 0 0 0 0 0 0 1 1
float64 150000 0 125728 6.04844 249.755 0 0 0.00296898 0.154181 0.559046 0.981278 1.09296 50708
int64 150000 0 86 52.2952 14.7719 0 24 33 52 63 72 87 109
int64 150000 0 16 0.421033 4.19278 0 0 0 0 0 1 4 98
float64 150000 0 114194 353.005 2037.82 0 0 0.030874 0.366508 0.868254 1267 4979.04 329664
float64 150000 0.1982 13594 6670.22 14384.7 0 0 2005 5400 8249 11666 25000 3.00875e+06
int64 150000 0 58 8.45276 5.14595 0 0 3 8 11 15 24 58
int64 150000 0 19 0.265973 4.1693 0 0 0 0 0 0 3 98
int64 150000 0 28 1.01824 1.12977 0 0 0 1 2 2 4 54
int64 150000 0 13 0.240387 4.15518 0 0 0 0 0 0 2 98
float64 150000 0.0262 13 0.757222 1.11509 0 0 0 0 1 2 4 20

Calculate IV value of features(Calculate by default decision tree binning)

lapras.quality(df_training.drop(to_drop,axis=1),target = target)
iv unique
1.16303 125728
0.880725 19
0.761485 16
0.601348 13
0.264446 86
0.111157 58
0.093006 13595
0.077739 114194
0.065721 28
0.036456 14

Calculate PSI of features between train and test dataset

All the PSIs are very small, that says the populations are stable.


cols = list(lapras.quality(df_training,target = target).reset_index()['index'])
for col in cols:
    if col not in [target]:
        print("%s: %.4f" % (col,lapras.PSI(df_training[col], df_testing[col])))
D:\anaconda3\lib\site-packages\lapras\stats.py:191: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.


RevolvingUtilizationOfUnsecuredLines: 0.0001
NumberOfTimes90DaysLate: 0.0000
NumberOfTime30-59DaysPastDueNotWorse: 0.0000
NumberOfTime60-89DaysPastDueNotWorse: 0.0000
age: 0.0001
NumberOfOpenCreditLinesAndLoans: 0.0001
MonthlyIncome: 0.0005
DebtRatio: 0.0001
NumberRealEstateLoansOrLines: 0.0001
NumberOfDependents: 0.0001

Calculate VIF

There are some multi-correlations in the dataset.

lapras.VIF(df_training.drop(to_drop,axis=1))
lapras.VIF(df_testing.drop(to_drop,axis=1))
SeriousDlqin2yrs                         1.033037
RevolvingUtilizationOfUnsecuredLines     1.000180
age                                      0.271682
NumberOfTime30-59DaysPastDueNotWorse    41.465993
DebtRatio                                1.027033
MonthlyIncome                            1.026314
NumberOfOpenCreditLinesAndLoans          1.231288
NumberOfTimes90DaysLate                 73.738360
NumberRealEstateLoansOrLines             1.255707
NumberOfTime60-89DaysPastDueNotWorse    93.546744
NumberOfDependents                       1.030817
dtype: float64






SeriousDlqin2yrs                          0.000000
RevolvingUtilizationOfUnsecuredLines      1.000302
age                                       1.042585
NumberOfTime30-59DaysPastDueNotWorse     46.935924
DebtRatio                                 1.025020
MonthlyIncome                             1.005398
NumberOfOpenCreditLinesAndLoans           1.286748
NumberOfTimes90DaysLate                  88.667497
NumberRealEstateLoansOrLines              1.252250
NumberOfTime60-89DaysPastDueNotWorse    112.127576
NumberOfDependents                        1.028935
dtype: float64

Dividing the training set into training and validating set

train_df, val_df, _, _ = train_test_split(df_training, df_training[[target]], test_size=0.2, random_state=42)
test_df = df_testing

Features selection

Automatically selecting features by IV, missing rate, corelations and VIF

train_selected, dropped = lapras.select(train_df.drop(to_drop,axis=1),target = target, empty = 0.95, \
                                                iv = 0.05, corr = 0.9, vif = False, return_drop=True, exclude=[])
print(dropped)
print(train_selected.shape)
train_selected.head(10)
{'empty': array([], dtype=float64), 'iv': array(['NumberOfDependents'], dtype=object), 'corr': array(['NumberOfTime60-89DaysPastDueNotWorse',
       'NumberOfTime30-59DaysPastDueNotWorse'], dtype=object)}
(120000, 8)
SeriousDlqin2yrs RevolvingUtilizationOfUnsecuredLines age DebtRatio MonthlyIncome NumberOfOpenCreditLinesAndLoans NumberOfTimes90DaysLate NumberRealEstateLoansOrLines
0 0 29 0.0115128 4342 5 0 0
0 0.595526 55 0.835333 1833 11 0 1
0 0 43 0.0434365 4166 2 0 0
0 0.39198 40 0.0597711 9000 2 0 0
0 0 35 0.133598 5800 12 0 1
0 0.442956 61 0.65852 7200 12 0 2
1 0.336976 27 0.275494 4500 9 0 0
0 0 49 0.230708 2500 5 0 0
0 0.322778 69 2754 nan 17 0 1
0 0.133706 57 0.122251 3500 7 0 0

Feature Binning

Following methods are supported: monotonous binning,decision tree binning, equal frequency binning,equal step size binning.

You can also adjust binnings by load the json.

c = lapras.Combiner()
c.fit(train_selected, y = target,method = 'dt', min_samples = 0.05,n_bins=8) #empty_separate = False
# c.load({'RevolvingUtilizationOfUnsecuredLines': [0.0001,
#   0.1318,
#   0.3009,
#   0.3963,
#   0.5003,
#   0.6987,
#   0.941],
#  'age': [35.5, 43.5, 52.5, 55.5, 59.5, 63.5, 67.5],
#  'DebtRatio': [0.0193, 0.1368, 0.4164, 0.5055, 0.7714, 2.9942, 995.5],
#  'MonthlyIncome': [930.0, 2000.5, 2649.5, 3456.5, 4833.5, 6596.5, 9930.5],
#  'NumberOfOpenCreditLinesAndLoans': [2.5, 3.5, 5.5, 7.5, 8.5, 13.5, 16.5],
#  'NumberOfTimes90DaysLate': [0.5],
#  'NumberRealEstateLoansOrLines': [0.5, 1.5, 2.5]})
c.export()
<lapras.transform.Combiner at 0x2745de778e0>


{'RevolvingUtilizationOfUnsecuredLines': [0.0001,
  0.1318,
  0.3009,
  0.3963,
  0.5003,
  0.6987,
  0.941],
 'age': [35.5, 43.5, 52.5, 55.5, 59.5, 63.5, 67.5],
 'DebtRatio': [0.0193, 0.1368, 0.4164, 0.5055, 0.7714, 2.9942, 995.5],
 'MonthlyIncome': [930.0, 2000.5, 2649.5, 3456.5, 4833.5, 6596.5, 9930.5],
 'NumberOfOpenCreditLinesAndLoans': [2.5, 3.5, 5.5, 7.5, 8.5, 13.5, 16.5],
 'NumberOfTimes90DaysLate': [0.5],
 'NumberRealEstateLoansOrLines': [0.5, 1.5, 2.5]}
c.transform(train_selected, labels=True).iloc[0:10,:]
SeriousDlqin2yrs RevolvingUtilizationOfUnsecuredLines age DebtRatio MonthlyIncome NumberOfOpenCreditLinesAndLoans NumberOfTimes90DaysLate NumberRealEstateLoansOrLines
0 00.[-inf,0.0001) 00.[-inf,35.5) 00.[-inf,0.0193) 04.[3456.5,4833.5) 02.[3.5,5.5) 00.[-inf,0.5) 00.[-inf,0.5)
0 05.[0.5003,0.6987) 03.[52.5,55.5) 05.[0.7714,2.9942) 01.[930.0,2000.5) 05.[8.5,13.5) 00.[-inf,0.5) 01.[0.5,1.5)
0 00.[-inf,0.0001) 01.[35.5,43.5) 01.[0.0193,0.1368) 04.[3456.5,4833.5) 00.[-inf,2.5) 00.[-inf,0.5) 00.[-inf,0.5)
0 03.[0.3009,0.3963) 01.[35.5,43.5) 01.[0.0193,0.1368) 06.[6596.5,9930.5) 00.[-inf,2.5) 00.[-inf,0.5) 00.[-inf,0.5)
0 00.[-inf,0.0001) 00.[-inf,35.5) 01.[0.0193,0.1368) 05.[4833.5,6596.5) 05.[8.5,13.5) 00.[-inf,0.5) 01.[0.5,1.5)
0 04.[0.3963,0.5003) 05.[59.5,63.5) 04.[0.5055,0.7714) 06.[6596.5,9930.5) 05.[8.5,13.5) 00.[-inf,0.5) 02.[1.5,2.5)
1 03.[0.3009,0.3963) 00.[-inf,35.5) 02.[0.1368,0.4164) 04.[3456.5,4833.5) 05.[8.5,13.5) 00.[-inf,0.5) 00.[-inf,0.5)
0 00.[-inf,0.0001) 02.[43.5,52.5) 02.[0.1368,0.4164) 02.[2000.5,2649.5) 02.[3.5,5.5) 00.[-inf,0.5) 00.[-inf,0.5)
0 03.[0.3009,0.3963) 07.[67.5,inf) 07.[995.5,inf) 00.[-inf,930.0) 07.[16.5,inf) 00.[-inf,0.5) 01.[0.5,1.5)
0 02.[0.1318,0.3009) 04.[55.5,59.5) 01.[0.0193,0.1368) 04.[3456.5,4833.5) 03.[5.5,7.5) 00.[-inf,0.5) 00.[-inf,0.5)
cols = list(lapras.quality(train_selected,target = target).reset_index()['index'])
for col in cols:
    if col != target:
        print(lapras.bin_stats(c.transform(train_selected[[col, target]], labels=True), col=col, target=target))
        lapras.bin_plot(c.transform(train_selected[[col,target]], labels=True), col=col, target=target)
  for name, series in frame.iteritems():


  RevolvingUtilizationOfUnsecuredLines  bad_count  total_count  bad_rate  \
0                     00.[-inf,0.0001)        259         8702  0.029763   
1                   01.[0.0001,0.1318)        810        48035  0.016863   
2                   02.[0.1318,0.3009)        612        17586  0.034800   
3                   03.[0.3009,0.3963)        342         6690  0.051121   
4                   04.[0.3963,0.5003)        381         5998  0.063521   
5                   05.[0.5003,0.6987)        859         9007  0.095370   
6                    06.[0.6987,0.941)       1551         9835  0.157702   
7                       07.[0.941,inf)       3256        14147  0.230155   

      ratio       woe        iv  total_iv  
0  0.072517 -0.854545  0.037033  1.116664  
1  0.400292 -1.435924  0.461712  1.116664  
2  0.146550 -0.692986  0.052537  1.116664  
3  0.055750 -0.291364  0.004177  1.116664  
4  0.049983 -0.061033  0.000181  1.116664  
5  0.075058  0.379961  0.012785  1.116664  
6  0.081958  0.954294  0.112781  1.116664  
7  0.117892  1.422283  0.435457  1.116664  

  NumberOfTimes90DaysLate  bad_count  total_count  bad_rate     ratio  \
0           00.[-inf,0.5)       5273       113347  0.046521  0.944558   
1            01.[0.5,inf)       2797         6653  0.420412  0.055442   

        woe        iv  total_iv  
0 -0.390497  0.121890  0.842514  
1  2.308637  0.720623  0.842514  

              age  bad_count  total_count  bad_rate     ratio       woe  \
0  00.[-inf,35.5)       1945        17216  0.112976  0.143467  0.569027   
1  01.[35.5,43.5)       1696        18470  0.091825  0.153917  0.338163   
2  02.[43.5,52.5)       2071        26274  0.078823  0.218950  0.171275   
3  03.[52.5,55.5)        582         8500  0.068471  0.070833  0.019297   
4  04.[55.5,59.5)        570        10950  0.052055  0.091250 -0.272280   
5  05.[59.5,63.5)        502        11233  0.044690  0.093608 -0.432572   
6  06.[63.5,67.5)        278         8547  0.032526  0.071225 -0.762928   
7   07.[67.5,inf)        426        18810  0.022648  0.156750 -1.135076   

         iv  total_iv  
0  0.059510  0.264022  
1  0.020391  0.264022  
2  0.006919  0.264022  
3  0.000027  0.264022  
4  0.006019  0.264022  
5  0.014563  0.264022  
6  0.030081  0.264022  
7  0.126513  0.264022  

  NumberOfOpenCreditLinesAndLoans  bad_count  total_count  bad_rate     ratio  \
0                   00.[-inf,2.5)       1349        10389  0.129849  0.086575   
1                    01.[2.5,3.5)        535         7195  0.074357  0.059958   
2                    02.[3.5,5.5)       1264        19619  0.064427  0.163492   
3                    03.[5.5,7.5)       1193        21438  0.055649  0.178650   
4                    04.[7.5,8.5)        483         9970  0.048445  0.083083   
5                   05.[8.5,13.5)       2006        33727  0.059478  0.281058   
6                  06.[13.5,16.5)        657         9019  0.072846  0.075158   
7                   07.[16.5,inf)        583         8643  0.067453  0.072025   

        woe            iv  total_iv  
0  0.727425  6.284771e-02  0.084394  
1  0.108112  7.344542e-04  0.084394  
2 -0.045901  3.376869e-04  0.084394  
3 -0.201717  6.664814e-03  0.084394  
4 -0.347941  8.666174e-03  0.084394  
5 -0.131116  4.566165e-03  0.084394  
6  0.085951  5.763235e-04  0.084394  
7  0.003239  7.564700e-07  0.084394  

        MonthlyIncome  bad_count  total_count  bad_rate     ratio       woe  \
0     00.[-inf,930.0)       1498        27129  0.055218  0.226075 -0.209951   
1   01.[930.0,2000.5)        653         6189  0.105510  0.051575  0.492270   
2  02.[2000.5,2649.5)        553         6006  0.092075  0.050050  0.341157   
3  03.[2649.5,3456.5)        898         8973  0.100078  0.074775  0.433362   
4  04.[3456.5,4833.5)       1406        16952  0.082940  0.141267  0.226666   
5  05.[4833.5,6596.5)       1246        18452  0.067527  0.153767  0.004400   
6  06.[6596.5,9930.5)       1117        20329  0.054946  0.169408 -0.215168   
7     07.[9930.5,inf)        699        15970  0.043770  0.133083 -0.454340   

         iv  total_iv  
0  0.009105  0.086102  
1  0.015486  0.086102  
2  0.006757  0.086102  
3  0.016959  0.086102  
4  0.008009  0.086102  
5  0.000003  0.086102  
6  0.007150  0.086102  
7  0.022634  0.086102  

            DebtRatio  bad_count  total_count  bad_rate     ratio       woe  \
0    00.[-inf,0.0193)        518        10404  0.049789  0.086700 -0.319179   
1  01.[0.0193,0.1368)        995        13993  0.071107  0.116608  0.059912   
2  02.[0.1368,0.4164)       2421        42046  0.057580  0.350383 -0.165559   
3  03.[0.4164,0.5055)        646         9015  0.071658  0.075125  0.068230   
4  04.[0.5055,0.7714)       1206        12652  0.095321  0.105433  0.379389   
5  05.[0.7714,2.9942)        937         7603  0.123241  0.063358  0.667628   
6   06.[2.9942,995.5)        681        10797  0.063073  0.089975 -0.068591   
7      07.[995.5,inf)        666        13490  0.049370  0.112417 -0.328064   

         iv  total_iv  
0  0.007703  0.084017  
1  0.000430  0.084017  
2  0.008943  0.084017  
3  0.000360  0.084017  
4  0.017900  0.084017  
5  0.037757  0.084017  
6  0.000411  0.084017  
7  0.010512  0.084017  

  NumberRealEstateLoansOrLines  bad_count  total_count  bad_rate     ratio  \
0                00.[-inf,0.5)       3747        44916  0.083422  0.374300   
1                 01.[0.5,1.5)       2206        41884  0.052669  0.349033   
2                 02.[1.5,2.5)       1448        25161  0.057549  0.209675   
3                 03.[2.5,inf)        669         8039  0.083219  0.066992   

        woe        iv  total_iv  
0  0.232990  0.022484  0.052885  
1 -0.259896  0.021086  0.052885  
2 -0.166120  0.005387  0.052885  
3  0.230331  0.003928  0.052885  

WOE value transformation

transfer = lapras.WOETransformer()
transfer.fit(c.transform(train_selected), train_selected[target], exclude=[target])

train_woe = transfer.transform(c.transform(train_selected))
val_woe = transfer.transform(c.transform(val_df))
test_woe = transfer.transform(c.transform(test_df))

transfer.export()
<lapras.transform.WOETransformer at 0x2746667ccd0>






{'RevolvingUtilizationOfUnsecuredLines': {0: -0.8545447193506434,
  1: -1.435924251083907,
  2: -0.6929855643979773,
  3: -0.29136415096437573,
  4: -0.06103342378641303,
  5: 0.37996133825687756,
  6: 0.9542941342803827,
  7: 1.422282881666063},
 'age': {0: 0.5690265657186839,
  1: 0.3381626624268103,
  2: 0.17127518361124283,
  3: 0.01929671368468067,
  4: -0.27227960227196496,
  5: -0.4325717146160795,
  6: -0.7629275544122108,
  7: -1.135076460199848},
 'DebtRatio': {0: -0.3191794579881027,
  1: 0.05991215232361727,
  2: -0.16555936062220464,
  3: 0.06823001536904652,
  4: 0.37938896793740196,
  5: 0.6676282169900559,
  6: -0.06859110802102461,
  7: -0.328063830129681},
 'MonthlyIncome': {0: -0.20995147767771272,
  1: 0.4922698255982443,
  2: 0.341157000215592,
  3: 0.4333621138306611,
  4: 0.22666561619976386,
  5: 0.004400453785423839,
  6: -0.21516837009619558,
  7: -0.45433994810005246},
 'NumberOfOpenCreditLinesAndLoans': {0: 0.7274245964408524,
  1: 0.10811217698089041,
  2: -0.045900527604813335,
  3: -0.20171651274902666,
  4: -0.34794087212098535,
  5: -0.13111603896185353,
  6: 0.08595130018741898,
  7: 0.0032385444691370685},
 'NumberOfTimes90DaysLate': {0: -0.39049652350955594, 1: 2.308637231090842},
 'NumberRealEstateLoansOrLines': {0: 0.23299016747526333,
  1: -0.25989576346995086,
  2: -0.16611993338112926,
  3: 0.23033126856416491}}

IF you want to ensure all the regression params are positive, you can select the features(WOE) once more.

# # Features filtering could be done once more after transformed into WOE value. This is optional.
# train_woe, dropped = lapras.select(train_woe,target = target, empty = 0.9, \
#                                                 iv = 0.02, corr = 0.9, vif = False, return_drop=True, exclude=[])
# print(dropped)
# print(train_woe.shape)
# train_woe.head(10)

Stepwise regression, to select best features, this is optional

# final_data = lapras.stepwise(train_woe,target = target, estimator='ols', direction = 'both', criterion = 'aic', exclude = [])
final_data = train_woe

Scorecard modeling

card = lapras.ScoreCard(
    combiner = c,
    transfer = transfer, 
    pdo = 40, 
    rate = 2, 
    base_odds = 1/60, 
    base_score = 600
)
col = list(final_data.drop([target],axis=1).columns)
card.fit(final_data[col], final_data[target])

ScoreCard(combiner=<lapras.transform.Combiner object at 0x7e03f8aa9fc0>,
transfer=<lapras.transform.WOETransformer object at 0x7e03effe75b0>)

card.get_params()['combiner']
card.get_params()['transfer']
print("card.intercept_:%s" % (card.intercept_))
print("card.coef_:%s" % (card.coef_))
card.export()
<lapras.transform.Combiner at 0x2745de778e0>

<lapras.transform.WOETransformer at 0x2746667ccd0>

card.intercept_:-2.620820761531965
card.coef_:[ 0.74975573  0.43247525  0.85266412  0.09651427 -0.30244651  0.72712492
  0.40350345]





{'intercept': {'[-inf,inf)': 514.97},
 'RevolvingUtilizationOfUnsecuredLines': {'[-inf,0.0001)': 36.97,
  '[0.0001,0.1318)': 62.13,
  '[0.1318,0.3009)': 29.98,
  '[0.3009,0.3963)': 12.61,
  '[0.3963,0.5003)': 2.64,
  '[0.5003,0.6987)': -16.44,
  '[0.6987,0.941)': -41.29,
  '[0.941,inf)': -61.54},
 'age': {'[-inf,35.5)': -14.2,
  '[35.5,43.5)': -8.44,
  '[43.5,52.5)': -4.27,
  '[52.5,55.5)': -0.48,
  '[55.5,59.5)': 6.8,
  '[59.5,63.5)': 10.8,
  '[63.5,67.5)': 19.04,
  '[67.5,inf)': 28.33},
 'DebtRatio': {'[-inf,0.0193)': 15.71,
  '[0.0193,0.1368)': -2.95,
  '[0.1368,0.4164)': 8.15,
  '[0.4164,0.5055)': -3.36,
  '[0.5055,0.7714)': -18.67,
  '[0.7714,2.9942)': -32.85,
  '[2.9942,995.5)': 3.38,
  '[995.5,inf)': 16.14},
 'MonthlyIncome': {'[-inf,930.0)': 1.17,
  '[930.0,2000.5)': -2.74,
  '[2000.5,2649.5)': -1.9,
  '[2649.5,3456.5)': -2.41,
  '[3456.5,4833.5)': -1.26,
  '[4833.5,6596.5)': -0.02,
  '[6596.5,9930.5)': 1.2,
  '[9930.5,inf)': 2.53},
 'NumberOfOpenCreditLinesAndLoans': {'[-inf,2.5)': 12.7,
  '[2.5,3.5)': 1.89,
  '[3.5,5.5)': -0.8,
  '[5.5,7.5)': -3.52,
  '[7.5,8.5)': -6.07,
  '[8.5,13.5)': -2.29,
  '[13.5,16.5)': 1.5,
  '[16.5,inf)': 0.06},
 'NumberOfTimes90DaysLate': {'[-inf,0.5)': 16.39, '[0.5,inf)': -96.87},
 'NumberRealEstateLoansOrLines': {'[-inf,0.5)': -5.43,
  '[0.5,1.5)': 6.05,
  '[1.5,2.5)': 3.87,
  '[2.5,inf)': -5.36}}
train_result = final_data[[target]].copy()
train_result['score'] = card.predict(final_data[col])
train_result['prob'] = card.predict_prob(final_data[col])

val_result = val_woe[[target]].copy()
val_result['score'] = card.predict(val_woe[col])
val_result['prob'] = card.predict_prob(val_woe[col])

test_result = df_testing
test_result['score'] = card.predict(test_woe[col])
test_result['prob'] = card.predict_prob(test_woe[col])

Model performance of validation dataset

lapras.perform(val_result['prob'],val_result[target])
KS: 0.5175
AUC: 0.8289

lapras.score_plot(val_result,score='score', target=target)

lapras.LIFT(val_result['prob'],val_result[target])
recall precision improve
0.1 0.525469 8.05934
0.2 0.475669 7.29554
0.3 0.445034 6.82568
0.4 0.354649 5.43939
0.5 0.282496 4.33276
0.6 0.234519 3.59691
0.7 0.202575 3.10697
0.8 0.159824 2.45129
0.9 0.115828 1.7765
1 0.0652 1

Prediction result for test dataset.

test_result[['score','prob']].head(10)
score prob
483.52 0.111464
519.46 0.0630556
585.35 0.021033
517.98 0.0645845
445.18 0.196006
526.37 0.0563404
521.72 0.0607733
627.52 0.0102394
644.37 0.00766631
366.5 0.487975

Discussion