はじめに
この記事では、統計検定準1級取得に向けて学習したことをまとめていきます。
工学系の数学ではなく数理あるあるの、論述ゴリゴリな解答になっていると思いますのであらかじめご了承ください。
注意:さらに計算過程は数学文化の『省略の美』を無視してエレファントに書いています。
【リンク紹介】
・統計検定準1級のまとめ記事一覧
・これまで書いたシリーズ記事一覧
学習書籍について
この記事では「統計学実践ワークブック」を中心に、学んだことをまとめていきます。記事を読んで本格的に勉強してみたいなと思った方は、是非ご購入を検討なさってください。
参考書籍について
統計実践ワークブックは、大量の知識項目と問題が収められている反面、計算過程や知識背景が大きく省略されているため、知識体系をきちんと学ぶ参考書として東京大学から出版されている名著「統計学入門」を使っています。
※ワークブックとしては素晴らしい質だと思いますが、どうしてもその内容量とページ数の都合上、問題のない範囲で削除されているということです。人によっては1冊で問題ない方もおられると思いますが、私には無理でした。
定義
a, b, c \hspace{2.6mm} :定数
x, y \hspace{5mm} :変数
X, Y \hspace{2.9mm} :確率変数
p(x) \hspace{4mm} :Xの確率関数
f(x) \hspace{3.6mm} :Xの確率密度関数
p(x, y) \hspace{0.4mm} :XとYの同時確率関数
f(x, y) \hspace{0mm} :XとYの同時確率密度関数
E[X] \hspace{2.1mm} :Xの期待値
V[X] \hspace{2mm} :Xの分散
期待値の性質
- E[c] = c
- E[cX] = cE[X]
- E[X + c] = E[X] + c
- E[X + Y] = E[X] + E[Y]
-
E[aX + bY + c] = aE[X] + bE[Y] + c
※性質2,4より明らかですが、ワークブックに掲載されていため記載
- E[XY] = E[X]E[Y]
-
E[E[X|Y]] = E[X]
※期待値の繰り返しの公式、もしくは全確率の公式といわれるもの。
この記事の『大トリ』
証明
- E[c] = c
(離散型のとき)
\begin{alignat*}{2}
E[c] &= \sum_{i = 1}^{\infty} c p(x_i) \\
&= c \sum_{i = 1}^{\infty} p(x_i) \\
&= c \times 1 \hspace{5mm} \left(\because \sum_{i = 1}^{\infty} p(x_i) = 1 \right) \\
&= c
\end{alignat*}
(連続型のとき)
\begin{alignat*}{2}
E[c] &= \int_{- \infty}^{\infty} c f(x) dx \\
&= c \int_{- \infty}^{\infty} f(x) dx \\
&= c \times 1 \hspace{5mm} \left( \because \int_{- \infty}^{\infty} f(x) dx = 1 \right) \\
&= c
\end{alignat*}
- E[cX] = cE[X]
(離散型のとき)
\begin{alignat*}{2}
E[cX] &= \sum_{i = 1}^{\infty} cx_i p(x_i) \\
&= c \sum_{i = 1}^{\infty} x_i p(x_i) \\
&= cE[X]
\end{alignat*}
(連続型のとき)
\begin{alignat*}{2}
E[cX] &= \int_{- \infty}^{\infty} cx f(x) dx \\
&= c \int_{- \infty}^{\infty} x f(x) dx \\
&= cE[X]
\end{alignat*}
- E[X + c] = E[X] + c
(離散型のとき)
\begin{alignat*}{2}
E[X + c] &= \sum_{- \infty}^{\infty} (x_i + c) p(x_i) \\
&= \sum_{- \infty}^{\infty} x_i p(x_i)
+ \sum_{- \infty}^{\infty} c p(x_i)\\
&= \sum_{- \infty}^{\infty} x_i p(x_i)
+ c \sum_{- \infty}^{\infty} p(x_i)\\
&= E[X] + c
\end{alignat*}
(連続型のとき)
\begin{alignat*}{2}
E[X + c] &= \int_{- \infty}^{\infty} (x + c) f(x) dx \\
&= \int_{- \infty}^{\infty} x f(x) dx
+ \int_{- \infty}^{\infty} c f(x) dx\\
&= \int_{- \infty}^{\infty} x f(x) dx
+ c \int_{- \infty}^{\infty} f(x) dx\\
&= E[X] + c
\end{alignat*}
- E[X + Y] = E[X] + E[Y]
(離散型のとき)
[定義の補足] p_X (x_i):Xの周辺確率関数
同時確率関数の期待値の定義より、
\begin{alignat*}{2}
E[X + Y] &= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty}
(x_i + y_j) p(x_i, y_j) \\
&= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty}
(x_i p(x_i, y_j) + y_j p(x_i, y_j)) \\
&= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} x_i p(x_i, y_j)
+ \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} y_j p(x_i, y_j) \\
&= \sum_{i = 1}^{\infty} x_i
\left(
\sum_{j = 1}^{\infty} p(x_i, y_j)
\right)
+ \sum_{j = 1}^{\infty} y_j
\left(
\sum_{i = 1}^{\infty} p(x_i, y_j)
\right) \\
&= \sum_{i = 1}^{\infty} x_i p_X (x_i)
+ \sum_{j = 1}^{\infty} y_j p_Y (y_j) \\
&= E[X] + E[Y]
\end{alignat*}
(連続型のとき)
[定義の補足] f_X (x):Xの周辺確率密度関数
同時確率密度関数の期待値の定義より、
\begin{alignat*}{2}
E[X + Y] &= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
(x + y) f(x, y) dx dy \\
&= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
(x f(x, y) + y f(x, y)) dx dy \\
&= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} x f(x, y) dx dy
+ \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} y f(x, y) dx dy \\
&= \int_{- \infty}^{\infty} x
\left(
\int_{- \infty}^{\infty} f(x, y) dy
\right) dx
+ \int_{- \infty}^{\infty} y
\left(
\int_{- \infty}^{\infty} f(x, y) dx
\right) dy \\
&= \int_{- \infty}^{\infty} x f_X (x)
+ \int_{- \infty}^{\infty} y f_Y (y) \\
&= E[X] + E[Y]
\end{alignat*}
- E[aX + bY + c] = aE[X] + bE[Y] + c
(離散型のとき)
\begin{alignat*}{2}
E[aX + bY + c] &= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty}
(ax_i + by_j + c) p(x_i, y_j) \\
&= a \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} x_i p(x_i, y_j)
+ b \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} y_j p(x_i, y_j)
+ c \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} p(x_i, y_j) \\
&= a \sum_{i = 1}^{\infty} x_i
\left(
\sum_{j = 1}^{\infty} p(x_i, y_j)
\right)
+ b \sum_{j = 1}^{\infty} y_j
\left(
\sum_{i = 1}^{\infty} p(x_i, y_j)
\right)
+ c \\
&= a \sum_{i = 1}^{\infty} x_i p_X(x_i)
+ b \sum_{j = 1}^{\infty} y_j p_Y(y_j)
+ c \\
&= aE[X] + bE[Y] + c
\end{alignat*}
(連続型のとき)
\begin{alignat*}{2}
E[aX + bY + c] &= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
(ax + by + c) f(x, y) dx dy \\
&= a \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
x f(x, y) dx dy
+ b \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
y f(x, y) dx dy
+ c \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
f(x, y) dx dy \\
&= a \int_{- \infty}^{\infty} x
\left(
\int_{- \infty}^{\infty} f(x, y) dy
\right) dx
+ b \int_{- \infty}^{\infty} y
\left(
\int_{- \infty}^{\infty} f(x, y) dx
\right) dy
+ c \\
&= a \int_{- \infty}^{\infty} x f_X(x) dx
+ b \int_{- \infty}^{\infty} y f_Y(y) dy
+ c \\
&= aE[X] + bE[Y] + c
\end{alignat*}
- E[XY] = E[X]E[Y]
(離散型のとき)
X, Yは独立であるので
\begin{alignat*}{2}
E[XY] &= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} x_i y_j p(x_i, y_j) \\
&= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty}
x_i y_j p_X (x_i, y_j) p_Y (x_i, y_j) \\
&= \left(
\sum_{i = 1}^{\infty}
x_i p_X (x_i, y_j)
\right)
\times
\left(
\sum_{j = 1}^{\infty}
y_j p_Y (x_i, y_j)
\right) \\
&= E[X]E[Y]
\end{alignat*}
(連続型のとき)
X, Yは独立であるので
\begin{alignat*}{2}
E[XY] &= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} x y f(x, y) dx dy \\
&= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}
x y f_X (x, y) f_Y (x, y) dx dy \\
&= \left(
\int_{- \infty}^{\infty}
x f_X (x, y) dx
\right)
\times
\left(
\int_{- \infty}^{\infty}
y f_Y (x, y) dy
\right) \\
&= E[X]E[Y]
\end{alignat*}
- E[E[X|Y]] = E[X]
(離散型のとき)
[定義の補足] E[X|Y]:Xが与えられたときのYとなる条件付き期待値
\begin{alignat*}{2}
E[X] &= \sum_{i = 1}^{\infty} \sum_{j = 1}^{\infty} x_i p(x_i, y_j) \\
&= \sum_{i = 1}^{\infty}
\left(
\sum_{j = 1}^{\infty} x_i \cfrac{p(x_i, y_j)}{p_Y(y_j)}
\right)
p_Y(y_j) \\
&= \sum_{i = 1}^{\infty} E[X|Y] p_Y(y_j) \\
&= E[E[X|Y]] \\
\end{alignat*}
※条件付き期待値E[X|Y]は、条件となる確率変数の値(Y = y_j)に依存する確率関数であることに注意する。
(連続型のとき)
[定義の補足] E[X|Y]:Xが与えられたときのYとなる条件付き期待値
\begin{alignat*}{2}
E[X] &= \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} x f(x, y) dx dy \\
&= \int_{- \infty}^{\infty}
\left(
\int_{- \infty}^{\infty} x \cfrac{f(x, y)}{f_Y(y)} dx
\right) \cdot
f_Y(y) dy \\
&= \int_{- \infty}^{\infty} E[X|Y] f_Y(y) dy \\
&= E[E[X|Y]] \\
\end{alignat*}
※条件付き期待値E[X|Y]は、条件となる確率変数の値(Y = y)に依存する確率関数であることに注意する。
参考資料
\bf{\textcolor{red}{記事が役に立った方は「いいね」を押していただけると、すごく喜びます \ 笑}}
ご協力のほどよろしくお願いします☆
Discussion