Open22
量子機械学習情報収集(論文など)
New Trends in Quantum Machine Learning
L. Buffoni and F. Caruso
A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.
A Quantum Approximate Optimization Algorithm
E. Farhi at al.
Power and limitations of single-qubit native quantum neural networks
Z. Yu et al.
Introduction to Quantum Reinforcement Learning: Theory and PennyLane-based Implementation
Y. Kwak et al.
reference に self citation が多いなぁ、しかも tutorial ってついた論文だらけで、本来の提案者の論文の方を cite すべきではないのだろうか。。。
Quantum Machine Learning
J. Biamonte et al.
Variational Quantum Algorithms
M. Cerezo et al.
Parameterized quantum circuits as machine learning models
M. Benedetti et al.
Noisy intermediate-scale quantum (NISQ) algorithms
K. Bharti et al.
Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms
S. Sim et al.
Evaluation of Parameterized Quantum Circuits: on the relation between classification accuracy, expressibility and entangling capability
T. Hubregtsen et al.
Barren plateaus in quantum neural network training landscapes
J. R. McClean
An initialization strategy for addressing barren plateaus in parametrized quantum circuits
E. Grant et al.
Towards Quantum Advantage on Noisy Quantum Computers
I. Akhalwaya et al.
NISQ-TDA