📖
EmbeddingGemma-300mでテキスト分類(LoRA)
初めに
GoogleからEmbeddingGemma-300mが出ましたので、ファインチューニングを試してみました。
EmbeddingGemma-300mでテキスト分類(ロジスティック回帰)では、accuracy = 89.6%でした。
今度はLoRAのファインチューニングを試してみます。
データセットは同様にlivedoor ニュースコーパスです。
今回の結果は、accuracy = 95.7%でした。
Gemma 3 270Mのファインチューニングより良い結果となりました。
インストール
!pip install evaluate
データ準備
livedoor ニュースコーパスを取得
%%capture
!wget https://www.rondhuit.com/download/ldcc-20140209.tar.gz
!tar xvf ldcc-20140209.tar.gz
ジャンル別に読み込む
import os
import glob
livedoor_news = {}
for folder in glob.glob("text/*"):
if os.path.isdir(folder):
texts = []
for txt in glob.glob(os.path.join(folder, "*.txt")):
text = []
with open(txt, "r") as f:
lines = f.readlines()
texts.append('\n'.join([line.strip() for line in lines[3:]]))
label = os.path.basename(folder)
livedoor_news[label] = texts
訓練データセットとテストデータセットを作成
from datasets import Dataset, concatenate_datasets
train_dataset = None
val_dataset = None
for label, texts in livedoor_news.items():
data = []
for text in texts:
data.append({"text": text, "label": label})
dataset = Dataset.from_list(data)
tmp_train = dataset.train_test_split(test_size=0.25, shuffle=True, seed=0)
if train_dataset is None:
train_dataset = tmp_train["train"]
val_dataset = tmp_train["test"]
else:
train_dataset = concatenate_datasets([train_dataset, tmp_train["train"]])
val_dataset = concatenate_datasets([val_dataset, tmp_train["test"]])
埋め込みモデル作成
from transformers import AutoTokenizer, AutoModel
import torch
model_name = "google/embeddinggemma-300m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
トークン化
classes = list(livedoor_news.keys())
def preprocess(batch):
inputs = tokenizer(
batch["text"],
padding="max_length",
truncation=True,
max_length=2048,
return_tensors="pt"
)
inputs["label"] = [classes.index(label) for label in batch["label"]]
return inputs
train_ds = train_dataset.map(preprocess, batched=True).shuffle(seed=0)
train_ds.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
val_ds = val_dataset.map(preprocess, batched=True)
val_ds.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
学習
学習用クラス作成
import torch.nn as nn
class GemmaForClassification(nn.Module):
def __init__(self, embedding_model, hidden_size, num_labels):
super().__init__()
self.embedding_model = embedding_model
self.classifier = nn.Linear(hidden_size, num_labels)
def forward(self, input_ids, attention_mask, labels=None):
outputs = self.embedding_model(input_ids=input_ids, attention_mask=attention_mask)
last_hidden = outputs.last_hidden_state
mask = attention_mask.unsqueeze(-1).type_as(last_hidden)
summed = (last_hidden * mask).sum(1)
divisor = mask.sum(1).clamp(min=1e-9)
pooled = summed / divisor
logits = self.classifier(pooled)
loss = None
if labels is not None:
loss = nn.CrossEntropyLoss()(logits, labels)
return {"loss": loss, "logits": logits}
model = GemmaForClassification(base_model, hidden_size=base_model.config.hidden_size, num_labels=len(classes))
LoRA作成
from peft import LoraConfig, get_peft_model, TaskType
# LoRA 適用
lora_config = LoraConfig(
task_type=TaskType.FEATURE_EXTRACTION,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj", # Attention
"gate_proj", "up_proj", "down_proj" # MLP
]
)
model.embedding_model = get_peft_model(model.embedding_model, lora_config)
model.embedding_model.print_trainable_parameters()
評価メソッド定義
import evaluate
import numpy as np
accuracy = evaluate.load("accuracy")
f1 = evaluate.load("f1")
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = np.argmax(logits, axis=-1)
return {
"accuracy": accuracy.compute(predictions=preds, references=labels)["accuracy"],
"f1_macro": f1.compute(predictions=preds, references=labels, average="macro")["f1"]
}
パラメーター設定
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./gemma_results",
eval_strategy="epoch",
save_strategy="epoch",
num_train_epochs=1,
per_device_train_batch_size=5,
per_device_eval_batch_size=5,
learning_rate=2e-4,
weight_decay=0.01,
logging_steps=50,
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
fp16=True,
report_to="none"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_ds,
eval_dataset=val_ds,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
学習!
trainer.train()
推論
import torch
def predict(text):
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=2048,
padding="max_length"
).to("cuda")
# 推論
with torch.no_grad():
outputs = model(**inputs)
preds = outputs["logits"].argmax(dim=-1).item()
return preds
model.eval()
h = 0
with open('predict.txt', 'w') as f:
for i, val in enumerate(val_dataset):
t = val['label']
p = livedoor_news_keys[predict(val['text'])]
#print("予測カテゴリ:", livedoor_news_keys[p])
if t == p:
h += 1
f.write(f"{t},{p}\n")
print(h, i)
集計
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
results = pd.read_csv('predict.txt', header=None)
figure, ax1 = plt.subplots()
SVM_confusion_df = pd.crosstab(results[0], results[1], rownames=['Actual'], normalize='index')
sn.heatmap(SVM_confusion_df, annot=True, cmap="YlGnBu", ax=ax1, cbar=False)

from sklearn.metrics import classification_report
report = classification_report(y_pred=results[1], y_true=results[0], target_names=classes, output_dict=True)
pd.DataFrame(report).T

Discussion