TrainiumでLLMを学習してInferentiaにデプロイする
はじめに
本記事では、AWS Trainium/Inferentiaを用いて、大規模言語モデル(LLM)を学習・推論する手順を解説します。
Trainium/Inferentiaとは
まずTrainiumとInferentiaについて簡単に説明します。
Trainium及びInferentiaはAWSによる独自設計の機械学習アクセラレータです。
Trainiumは訓練ワークロードに最適化されたデバイスです。各Trainiumデバイスには第2世代のNeuronコアであるNeuronコアv2が2つずつ搭載されています。Trainiumデバイスを搭載したEC2インスタンスはTrn1インスタンスと呼ばれ、搭載されているデバイスの数に応じて異なるサイズが用意されています。
Inferentiaは推論ワークロードに最適化されたデバイスです。第2世代となるInferentia2には、Trainiumと同様に、Neuronコアv2が2つずつ搭載されています。Trainiumとの違いは搭載されているNeuronLinkの数であり、デバイス間相互接続における帯域幅に差が出ます。Inferentia2デバイスを搭載したEC2インスタンスはInf2インスタンスと呼ばれ、搭載されているデバイスの数に応じて異なるサイズが用意されています。
Neuron SDKはTrn1/Inf2インスタンス上でワークロードを実行するためのSDKです。Neuron SDKを利用した分散学習ライブラリとしてNeuronX Distributedがあります。LLMの推論ライブラリにはTransformers NeuronXがあります。Optimum NeuronはHuggingFaceによって開発されている、NeuronX DistributedとTransformers NeuronXをTransformers互換のインターフェースで扱うためのライブラリです。Text Generation Inference(TGI)はLLMをデプロイするためのツールキットで、NeuronX TGIはそのTrainium/Inferentiaに対応したバージョンです。
使用するモデル・データセット
本記事ではTanuki-8Bを例に、Trainium/Inferentiaでの学習と推論の手順を解説します。Tanuki-8Bは、GENIAC 松尾研 LLM開発プロジェクトの成果物として公開されているモデルです。Llamaと同等のアーキテクチャであるため、既存のエコシステムを活用する事ができます。
データセットには、MinnadeChatデータセットとichikara-instructionを使用します。MinnadeChatデータセットは、Tanuki-8Bの開発者たちによって作られた人手でアノテーションされたデータセットです。ichikara-instructionは、理研AIPによって提供されているデータセットです。
事前準備
以降の手順では、AWS CLIとCloudFormationを使用してリソースのプロビジョニングを行います。AWS CLIのインストールや初期設定がまだの場合はAWSのドキュメントを参考に事前に設定してください。
ParallelClusterを使用した分散学習
Tanuki-8BをParallelClusterで分散学習します。
環境構築
まずは環境構築を行います。クラスタの構成は下図の通りです。
VPC
VPCを作成します。以下のようなCloudFormationテンプレートを作成します。
vpc.yaml
AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to deploy a VPC"
Parameters:
CidrBlock:
Type: String
Description: CIDR Block
Default: 10.0.0.0/16
VPCName:
Type: String
Description: Name of your VPC
SubnetsAZ1:
Type: AWS::EC2::AvailabilityZone::Name
Description: Availability zone in which the subnets will be created.
SubnetsAZ2:
Type: AWS::EC2::AvailabilityZone::Name
Description: Availability zone in which the subnets will be created.
Resources:
VPC:
Type: AWS::EC2::VPC
Properties:
EnableDnsSupport: true
EnableDnsHostnames: true
CidrBlock: !Ref CidrBlock
Tags:
- Key: Name
Value: LLM VPC
FlowLogsRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Principal:
Service: vpc-flow-logs.amazonaws.com
Action: sts:AssumeRole
Policies:
- PolicyName: flowlogs-policy
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- logs:CreateLogStream
- logs:PutLogEvents
- logs:DescribeLogGroups
- logs:DescribeLogStreams
Resource: !GetAtt FlowLogsGroup.Arn
FlowLogsGroup:
Type: AWS::Logs::LogGroup
Properties:
RetentionInDays: 7
FlowLogVPC:
Type: AWS::EC2::FlowLog
Properties:
DeliverLogsPermissionArn: !GetAtt FlowLogsRole.Arn
LogGroupName: FlowLogsGroup
ResourceId: !Ref VPC
ResourceType: VPC
TrafficType: ALL
InternetGateway:
Type: AWS::EC2::InternetGateway
GatewayToInternet:
Type: AWS::EC2::VPCGatewayAttachment
Properties:
VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway
NATGateway:
Type: AWS::EC2::NatGateway
Properties:
AllocationId: !GetAtt ElasticIP.AllocationId
SubnetId: !Ref PublicSubnet1
ElasticIP:
Type: AWS::EC2::EIP
Properties:
Domain: vpc
PublicSubnet1:
Type: AWS::EC2::Subnet
DependsOn: VPC
Properties:
MapPublicIpOnLaunch: true
VpcId: !Ref VPC
CidrBlock: !Select [0, !Cidr [!GetAtt VPC.CidrBlock, 3, 14]]
AvailabilityZone: !Ref SubnetsAZ1
Tags:
- Key: Name
Value: !Join [" ", [!Ref VPCName, "Public Subnet -", !Ref SubnetsAZ1]]
PublicSubnet2:
Type: AWS::EC2::Subnet
DependsOn: VPC
Properties:
MapPublicIpOnLaunch: true
VpcId: !Ref VPC
CidrBlock: !Select [1, !Cidr [!GetAtt VPC.CidrBlock, 3, 14]]
AvailabilityZone: !Ref SubnetsAZ2
Tags:
- Key: Name
Value: !Join [" ", [!Ref VPCName, "Public Subnet -", !Ref SubnetsAZ2]]
PrivateSubnet1:
Type: AWS::EC2::Subnet
DependsOn: VPC
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [2, !Cidr [!GetAtt VPC.CidrBlock, 3, 14]]
AvailabilityZone: !Ref SubnetsAZ1
Tags:
- Key: Name
Value:
!Join [" ", [!Ref VPCName, "Private Subnet -", !Ref SubnetsAZ1]]
PublicRouteTable:
Type: AWS::EC2::RouteTable
Properties:
VpcId: !Ref VPC
PublicRoute:
Type: AWS::EC2::Route
Properties:
RouteTableId: !Ref PublicRouteTable
DestinationCidrBlock: 0.0.0.0/0
GatewayId: !Ref InternetGateway
PrivateRouteTable:
Type: AWS::EC2::RouteTable
Properties:
VpcId: !Ref VPC
PrivateRouteToInternet:
Type: AWS::EC2::Route
Properties:
RouteTableId: !Ref PrivateRouteTable
DestinationCidrBlock: 0.0.0.0/0
NatGatewayId: !Ref NATGateway
PublicSubnet1RouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref PublicSubnet1
RouteTableId: !Ref PublicRouteTable
PublicSubnet2RouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref PublicSubnet2
RouteTableId: !Ref PublicRouteTable
PrivateSubnet1RTAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref PrivateSubnet1
RouteTableId: !Ref PrivateRouteTable
DefaultSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Default Security group
VpcId: !Ref VPC
DefaultSecurityGroupIngress:
Type: AWS::EC2::SecurityGroupIngress
Properties:
GroupId: !Ref DefaultSecurityGroup
IpProtocol: -1
FromPort: -1
ToPort: -1
SourceSecurityGroupId: !Ref DefaultSecurityGroup
DefaultSecurityGroupEgress:
Type: AWS::EC2::SecurityGroupEgress
Properties:
GroupId: !Ref DefaultSecurityGroup
IpProtocol: -1
FromPort: -1
ToPort: -1
DestinationSecurityGroupId: !Ref DefaultSecurityGroup
VPCESecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Security group for VPC Endpoint
SecurityGroupIngress:
- IpProtocol: tcp
FromPort: 443
ToPort: 443
SourceSecurityGroupId: !Ref DefaultSecurityGroup
SecurityGroupEgress:
- IpProtocol: -1
FromPort: -1
ToPort: -1
CidrIp: 0.0.0.0/0
VpcId: !Ref VPC
S3Endpoint:
Type: AWS::EC2::VPCEndpoint
Properties:
RouteTableIds:
- !Ref PublicRouteTable
- !Ref PrivateRouteTable
ServiceName: !Sub com.amazonaws.${AWS::Region}.s3
VpcEndpointType: Gateway
VpcId: !Ref VPC
LogsEndpoint:
Type: AWS::EC2::VPCEndpoint
Properties:
VpcEndpointType: Interface
PrivateDnsEnabled: true
ServiceName: !Sub com.amazonaws.${AWS::Region}.logs
VpcId: !Ref VPC
SubnetIds:
- !Ref PrivateSubnet1
SecurityGroupIds:
- !Ref VPCESecurityGroup
Outputs:
VPC:
Value: !Ref VPC
Description: ID of the VPC
Export:
Name: !Sub ${AWS::StackName}-VPC
PublicSubnet1:
Value: !Ref PublicSubnet1
Description: ID of the public subnet
Export:
Name: !Sub ${AWS::StackName}-PublicSubnet1
PublicSubnet2:
Value: !Ref PublicSubnet2
Description: ID of the public subnet
Export:
Name: !Sub ${AWS::StackName}-PublicSubnet2
PrivateSubnet1:
Value: !Ref PrivateSubnet1
Description: ID of the private subnets
Export:
Name: !Sub ${AWS::StackName}-PrivateSubnet1
DefaultSecurityGroup:
Value: !Ref DefaultSecurityGroup
Description: ID of the default security group
VPC名やリージョン、アベイラビリティーゾーン(AZ)を環境変数に設定します。AZはTrn1とInf2が利用可能なゾーンを選んでいます。[1]
export VPC_NAME=llm-vpc
export REGION=us-west-2
export AZ1=$(aws ec2 describe-availability-zones \
--region ${REGION} \
--query "AvailabilityZones[]" \
--filters "Name=zone-id,Values=usw2-az4" \
--query "AvailabilityZones[].ZoneName" \
--output text)
export AZ2=$(aws ec2 describe-availability-zones \
--region ${REGION} \
--query "AvailabilityZones[]" \
--filters "Name=zone-id,Values=usw2-az1" \
--query "AvailabilityZones[].ZoneName" \
--output text)
リソースをプロビジョニングします。
aws cloudformation deploy \
--region ${REGION} \
--capabilities CAPABILITY_IAM \
--template-file vpc.yaml \
--stack-name ${VPC_NAME} \
--parameter-overrides \
VPCName=${VPC_NAME} \
SubnetsAZ1=${AZ1} \
SubnetsAZ2=${AZ2}
S3
S3バケットを作成します。以下のようなCloudFormationテンプレートを作成します。
s3.yaml
AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create an S3 bucket with customizable name"
Parameters:
BucketName:
Type: String
Description: "Name of the S3 bucket to be created"
Resources:
S3Bucket:
Type: "AWS::S3::Bucket"
DeletionPolicy: Delete
Properties:
BucketName: !Ref BucketName
AccessControl: Private
BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:
SSEAlgorithm: AES256
Outputs:
BucketName:
Description: "Name of the newly created S3 bucket"
Value: !Ref S3Bucket
BucketARN:
Description: "ARN of the newly created S3 bucket"
Value: !GetAtt S3Bucket.Arn
バケット名を環境変数に設定します。
timestamp=$(date +%s)
random_string=$(openssl rand -hex 3)
export BUCKET_NAME=llm-bucket-${timestamp}-${random_string}
リソースをプロビジョニングします。
aws cloudformation deploy \
--region ${REGION} \
--capabilities CAPABILITY_IAM \
--template-file s3.yaml \
--stack-name ${BUCKET_NAME} \
--parameter-overrides \
BucketName=${BUCKET_NAME}
ParallelCluster
ParallelClusterを作成します。以下のようなCloudFormationテンプレートを作成します。
pcluster.yaml
AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create an Parallel Cluster"
Parameters:
KeyName:
Type: String
Description: "Name of the key pair to be created"
PublicSubnetId:
Type: String
Description: "ID of the VPC public subnet"
PrivateSubnetId:
Type: String
Description: "ID of the VPC private subnet"
Spot:
Type: String
Description: "Use Spot Instances if true, On-Demand if false"
Default: "false"
AllowedValues:
- "true"
- "false"
NeuronVersion:
Type: String
Description: "Version of Neuron SDK"
Default: v2.19.0
Mappings:
ParallelCluster:
Constants:
Version: 3.10.1
Conditions:
UseSpotInstances: !Equals
- !Ref Spot
- "true"
Resources:
KeyPair:
Type: "AWS::EC2::KeyPair"
Properties:
KeyName: !Ref KeyName
PclusterClusterProvider:
Type: AWS::CloudFormation::Stack
Properties:
TemplateURL: !Sub
- https://${AWS::Region}-aws-parallelcluster.s3.${AWS::Region}.${AWS::URLSuffix}/parallelcluster/${Version}/templates/custom_resource/cluster.yaml
- { Version: !FindInMap [ParallelCluster, Constants, Version] }
PclusterCluster:
Type: Custom::PclusterCluster
Properties:
ServiceToken: !GetAtt [PclusterClusterProvider, Outputs.ServiceToken]
ClusterName: !Sub "c-${AWS::StackName}"
ClusterConfiguration:
Region: !Ref AWS::Region
Image:
Os: ubuntu2004
HeadNode:
InstanceType: c5.4xlarge
Networking:
SubnetId: !Ref PublicSubnetId
Ssh:
KeyName: !Ref KeyPair
LocalStorage:
RootVolume:
Size: 1024
CustomActions:
OnNodeConfigured:
Script: !Sub s3://neuron-s3/pcluster/post-install-scripts/neuron-installation/${NeuronVersion}/u20/pt/install_neuron.sh
Iam:
S3Access:
- BucketName: neuron-s3
EnableWriteAccess: false
Scheduling:
Scheduler: slurm
SlurmSettings:
QueueUpdateStrategy: DRAIN
SlurmQueues:
- Name: compute1
CapacityType: !If
- UseSpotInstances
- SPOT
- ONDEMAND
ComputeSettings:
LocalStorage:
RootVolume:
Size: 1024
EphemeralVolume:
MountDir: /local_storage
ComputeResources:
- Efa:
Enabled: true
InstanceType: trn1.32xlarge
MaxCount: 8
MinCount: 0
Name: queue1-i1
Networking:
SubnetIds:
- !Ref PrivateSubnetId
PlacementGroup:
Enabled: true
CustomActions:
OnNodeConfigured:
Script: !Sub s3://neuron-s3/pcluster/post-install-scripts/neuron-installation/${NeuronVersion}/u20/pt/install_neuron.sh
Iam:
S3Access:
- BucketName: neuron-s3
EnableWriteAccess: false
SharedStorage:
- MountDir: /fsx
Name: pclusterfsx
StorageType: FsxLustre
FsxLustreSettings:
DeploymentType: PERSISTENT_2
DataCompressionType: LZ4
StorageCapacity: 1200
PerUnitStorageThroughput: 125
Outputs:
KeyPairId:
Description: "The ID of the key pair"
Value: !GetAtt KeyPair.KeyPairId
HeadNodeIp:
Description: The Public IP address of the HeadNode
Value: !GetAtt [PclusterCluster, headNode.publicIpAddress]
作成したパブリックサブネットとプライベートサブネットのIDを取得し環境変数に設定します。
export PUBLIC_SUBNET_ID=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='PublicSubnet1'].OutputValue" \
--output text)
export PRIVATE_SUBNET_ID=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='PrivateSubnet1'].OutputValue" \
--output text)
クラスター名とキーペア名を環境変数に設定します。
export PCLUSTER_NAME=llm-pcluster
export KEY_NAME=my-key-pair
リソースをプロビジョニングします。
aws cloudformation deploy \
--region ${REGION} \
--capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND \
--template-file pcluster.yaml \
--stack-name ${PCLUSTER_NAME} \
--parameter-overrides \
KeyName=${KEY_NAME} \
PublicSubnetId=${PUBLIC_SUBNET_ID} \
PrivateSubnetId=${PRIVATE_SUBNET_ID} \
BucketName=${BUCKET_NAME}
aws cloudformation wait stack-create-complete \
--region ${REGION} \
--stack-name ${PCLUSTER_NAME}
FSxと作成したS3バケットの関連付けを行います。
fsx_id=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name c-${PCLUSTER_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='FSXIds'].OutputValue" \
--output text)
aws fsx create-data-repository-association \
--region ${REGION} \
--file-system-id ${fsx_id} \
--file-system-path / \
--data-repository-path s3://${BUCKET_NAME} \
--s3 "AutoImportPolicy={Events=[NEW,CHANGED,DELETED]},AutoExportPolicy={Events=[NEW,CHANGED,DELETED]}" \
--batch-import-meta-data-on-create
パラメータストアから作成した秘密鍵を取得します。
key_pair_id=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${PCLUSTER_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='KeyPairId'].OutputValue" \
--output text)
aws ssm get-parameter \
--region ${REGION} \
--name /ec2/keypair/${key_pair_id} \
--with-decryption \
--query "Parameter.Value" \
--output text \
> ~/.ssh/${KEY_NAME}.pem
chmod 400 ~/.ssh/${KEY_NAME}.pem
SSHの設定ファイルに追記します。
head_node_ip=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${PCLUSTER_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='HeadNodeIp'].OutputValue" \
--output text)
cat <<EOF >> ~/.ssh/config
Host ${PCLUSTER_NAME}
HostName ${head_node_ip}
User ubuntu
IdentityFile ~/.ssh/${KEY_NAME}.pem
EOF
SSHでヘッドノードに接続します。以降はヘッドノード上での作業になります。
ssh ${PCLUSTER_NAME}
準備
仮想環境を有効化します。
source ~/aws_neuron_venv_pytorch/bin/activate
Neuron SDK v2.19.0時点のサンプルコードをダウンロードします。リポジトリにタグが追加されていないので、コミットSHAでバージョンを指定しています。
commit_sha=0f2a90f6ba2dc8fb12833d85e48732ca36717611
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/tp_zero1_llama_hf_pretrain/logger.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/tp_zero1_llama_hf_pretrain/tp_zero1_llama_hf_pretrain.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/lr.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/modeling_llama_nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/requirements.txt
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/llama/training_utils.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/${commit_sha}/examples/training/checkpoint_converter.py
パッケージをインストールします。
pip install -r requirements.txt
データセットの前処理
MinnadeChatとichikara-instructionを教師ありファインチューニング(SFT)用に前処理します。
以下のスクリプトを作成します。
get_dataset.py
import argparse
import os
from itertools import chain
from datasets import (
Dataset,
Features,
Sequence,
Value,
concatenate_datasets,
load_dataset,
)
from transformers import AutoTokenizer
def minnade_to_oasst(row):
row["message_id"] = row.pop("id")
row["text"] = row.pop("body") or ""
row["replies"] = []
return row
def read_dataset_message_trees(dataset_name: str, split: str, revision: str):
dataset = load_dataset(dataset_name, split=split, revision=revision)
dataset = dataset.sort("created_at")
trees: list[dict] = []
for row in dataset:
row = minnade_to_oasst(row)
if row["parent_id"] is None:
tree_dict = {
"message_tree_id": row["message_id"],
"prompt": row,
}
trees.append(tree_dict)
else:
for tree_dict in trees:
def add_child(node: dict, new_node: dict):
if new_node["parent_id"] == node["message_id"]:
node["replies"].append(new_node)
return
for i, _ in enumerate(node["replies"]):
add_child(node["replies"][i], new_node)
add_child(tree_dict["prompt"], row)
return trees
def create_threads(node, threads, parents=None):
parents = parents or []
if not node:
return
thread = parents + [node]
if not thread[-1]["replies"]:
threads.append(thread)
if node["replies"]:
parents = thread
for c in node["replies"]:
create_threads(c, threads, parents)
def gen_thread(dataset_name: str, split: str, revision: str):
trees = read_dataset_message_trees(dataset_name, split, revision)
threads: list[list] = []
for tree in trees:
create_threads(tree["prompt"], threads)
for thread in threads:
if thread[0]["role"] == "system":
for i, m in enumerate(thread):
if i == 0:
continue
if i % 2 == 0:
assert m["role"] == "assistant", m
else:
m["role"] == "user", m
else:
for i, m in enumerate(thread):
if i % 2 == 0:
assert m["role"] == "user", m
else:
m["role"] == "assistant", m
if thread[-1]["role"] == "user":
thread = thread[:-1]
if thread[-1]["role"] == "system":
thread = thread[:-1]
if thread:
yield {
"messages": [{"role": m["role"], "content": m["text"]} for m in thread]
}
def load_minnade_dataset():
return Dataset.from_generator(
gen_thread,
gen_kwargs={
"dataset_name": "minnade/chat-daily",
"split": "train",
"revision": "2024-07-25",
},
)
def load_ichikara_dataset():
dataset = load_dataset(
"p1atdev/ichikara-instruction", "20231221-003", split="train"
)
return dataset.map(
lambda example: {
"messages": [
{"role": "user", "content": example["text"]},
{"role": "assistant", "content": example["output"]},
]
},
remove_columns=dataset.column_names,
)
def main(args):
save_path = os.path.expanduser(args.data_dir)
if not os.path.exists(save_path):
os.makedirs(save_path)
block_size = args.block_size
features = Features(
{
"input_ids": Sequence(feature=Value(dtype="int32")),
"labels": Sequence(feature=Value(dtype="int32")),
}
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
BOS = [tokenizer.bos_token_id]
EOS = [tokenizer.eos_token_id]
BINST = tokenizer.encode("[INST]", add_special_tokens=False)
EINST = tokenizer.encode("[/INST]", add_special_tokens=False)
BSYS = tokenizer.encode("<<SYS>>\n", add_special_tokens=False)
ESYS = tokenizer.encode("\n<</SYS>>\n\n", add_special_tokens=False)
def tokenize(example):
input_ids = []
labels = []
if example["messages"][0]["role"] == "system":
system = example["messages"][0]["content"]
messages = example["messages"][1:]
else:
system = None
messages = example["messages"]
for i, message in enumerate(messages):
if message["role"] == "user":
if i == 0 and system:
tokens = (
BOS
+ BINST
+ BSYS
+ tokenizer.encode(system, add_special_tokens=False)
+ ESYS
+ tokenizer.encode(message["content"], add_special_tokens=False)
+ EINST
)
else:
tokens = (
BOS
+ BINST
+ tokenizer.encode(message["content"], add_special_tokens=False)
+ EINST
)
input_ids += tokens
labels += [-100] * len(tokens)
else:
tokens = (
tokenizer.encode(message["content"], add_special_tokens=False) + EOS
)
input_ids += tokens
labels += tokens
return {"input_ids": input_ids, "labels": labels}
def group_texts(examples):
concatenated_examples = {
k: list(chain.from_iterable(values for values in examples[k]))
for k in features.keys()
}
total_length = len(concatenated_examples[list(features.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
dataset = concatenate_datasets([load_minnade_dataset(), load_ichikara_dataset()])
dataset = (
dataset.map(
tokenize,
remove_columns=dataset.column_names,
features=features,
)
.shuffle(seed=42)
.map(
group_texts,
batched=True,
)
.shuffle(seed=42)
.filter(lambda example: not all([e < 0 for e in example["labels"]]))
.map(lambda example: {**example, "attention_mask": True})
)
print(dataset)
dataset.save_to_disk(save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
help="Model name.",
)
parser.add_argument(
"--data_dir",
type=str,
help="Pre-tokenized dataset directory.",
)
parser.add_argument(
"--block_size",
type=int,
default=8192,
help="Block size.",
)
args = parser.parse_args()
main(args)
モデル名とデータの出力先のパスを環境変数に設定します。
export HF_MODEL_NAME=weblab-GENIAC/Tanuki-8B-dpo-v1.0
export DATA_PATH=/fsx/data/minnade-ichikara
スクリプトを実行してデータセットを作成します。
python get_dataset.py \
--model_name ${HF_MODEL_NAME} \
--data_dir ${DATA_PATH}
ここでは、Llama 2 Chatのプロンプトフォーマットを使用しています。
チェックポイントの変換
以下のスクリプトを作成します。
convert_checkpoints.py
import torch
import torch_xla.utils.serialization as xser
from transformers import AutoConfig, AutoModelForCausalLM
from checkpoint_converter import CheckpointConverterBase
class CheckpointConverterLlama(CheckpointConverterBase):
def load_partial_xser(self, args, tp_rank, pp_rank):
filename = self.get_input_filename(args, tp_rank, pp_rank, 1)
partial_state = xser.load(filename)
partial_state = {k: v.to(torch.bfloat16) for k, v in partial_state.items()}
return partial_state
def save_full(self, args, full_state):
config = AutoConfig.from_pretrained(args.config)
with torch.device("meta"):
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(full_state, assign=True)
model.save_pretrained(args.output_dir)
def load_full_state(self, args):
model = AutoModelForCausalLM.from_pretrained(args.input_dir, torch_dtype="auto")
if args.vocab_size > 0:
with torch.no_grad():
model.resize_token_embeddings(args.vocab_size)
return model.state_dict()
if __name__ == "__main__":
checkpoint_converter = CheckpointConverterLlama()
parser = checkpoint_converter.get_arg_parser()
parser.add_argument(
"--vocab_size", type=int, default=-1, help="Vocabulary size of the model"
)
args, _ = parser.parse_known_args()
checkpoint_converter.run(args)
設定ファイルをダウンロードします。
export MODEL_CONFIG_PATH=./tanuki-8b/config.json
mkdir ./tanuki-8b
curl https://huggingface.co/${HF_MODEL_NAME}/raw/main/config.json \
| jq '. + {"vocab_size": 128256, "sequence_parallel_enabled": false, "selective_checkpoint_enabled": false, "move_model_to_device": false}' \
> ${MODEL_CONFIG_PATH}
環境変数を設定します。
export CHECKPOINT_DIR=/fsx/checkpoints
export TP_DEGREE=32
export KV_REPLICATOR=4
スクリプトを実行して、TransformersのチェックポイントをNeuronX Distributedのフォーマットに変換します。
python convert_checkpoints.py \
--input_dir ${HF_MODEL_NAME} \
--output_dir ${CHECKPOINT_DIR}/pretrained_weight \
--config ${MODEL_CONFIG_PATH} \
--tp_size ${TP_DEGREE} \
--kv_size_multiplier ${KV_REPLICATOR} \
--qkv_linear True \
--convert_from_full_state True \
--vocab_size 128256
ここで、語彙サイズをLlama 3と同じ128256に変更しています。語彙サイズをLlama 3と揃えることで、Tanuki-8BはLlama 3 8Bと完全に等価なアーキテクチャになります。これにより、Llama 3 8BのNeuron Model Cacheを流用することができ、推論時のモデルのコンパイルを省略することができます。
学習の実行
以下のスクリプトを作成します。
tp_zero1_tanuki_8b.sh
#!/bin/bash
#############################################
# User defined parameters and env vars
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
export NEURON_CC_FLAGS="--model-type transformer --distribution-strategy=llm-training --cache_dir=$SCRIPT_DIR/neuron_compile_cache/"
export NEURON_FUSE_SOFTMAX=1
# Async Runtime
export NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=3
# HOST OOM
export MALLOC_ARENA_MAX=64
# TP degree
: {TP_DEGREE:=32}
# KV replication size
: {KV_REPLICATOR:=4}
# 0: bf16; 1: mixed precision
USE_MIX_PRECISION=1
# 0: use pure DP; 1: use ZeRO-1
USE_ZERO_1=1
# global batch size
GBS=8
# micro batch size
MBS=1
# number of steps to run
TOTAL_STEPS=100
# warmup steps
WARMUP_STEPS=10
# Model config path
: {MODEL_CONFIG_PATH:="$SCRIPT_DIR/tanuki-8b"}
# Data path
: {DATA_PATH:="$SCRIPT_DIR/data/minnade-ichikara"}
# sequence length
SEQ_LEN=8192
# Checkpoint directory
: {CHECKPOINT_DIR:="$SCRIPT_DIR/checkpoints"}
#############################################
export NUM_NEURONCORES=32
NODE_ID=0
WORLD_SIZE=1
DISTRIBUTED_ARGS="--nproc_per_node $NUM_NEURONCORES"
if [ ! -z "$SLURM_NTASKS" ]; then
WORLD_SIZE=$SLURM_NTASKS
NODE_ID=$SLURM_NODEID
MASTER_ADDRESS=(`scontrol show hostnames $SLURM_JOB_NODELIST`)
DISTRIBUTED_ARGS="--nproc_per_node $NUM_NEURONCORES --nnodes $WORLD_SIZE --node_rank $NODE_ID --master_addr $MASTER_ADDRESS --master_port 44000"
if [ $NODE_ID -eq 0 ]; then
echo "WORLD_SIZE=$WORLD_SIZE"
echo "NODE_ID=$NODE_ID"
echo "MASTER_ADDRESS=$MASTER_ADDRESS"
echo "DISTRIBUTED_ARGS=$DISTRIBUTED_ARGS"
fi
export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
fi
echo "WORLD_SIZE=$WORLD_SIZE"
echo "NODE_ID=$NODE_ID"
echo "MASTER_ADDRESS=$MASTER_ADDRESS"
sudo sysctl -w net.ipv4.ip_local_reserved_ports=44000,48620
export NEURON_RT_NUM_CORES=32
export NUM_NEURONCORES=$NEURON_RT_NUM_CORES
export TPU_NUM_DEVICES=$NEURON_RT_NUM_CORES
export TPU_CHIPS_PER_HOST_BOUNDS=$NEURON_RT_NUM_CORES
#############################################
EXTRA_ARGS=" "
if [ $USE_MIX_PRECISION -gt 0 ]; then
EXTRA_ARGS+=" --use_mix_precision"
fi
if [ $USE_ZERO_1 -gt 0 ]; then
EXTRA_ARGS+=" --use_zero_1"
fi
DP=$(($NEURON_RT_NUM_CORES * $WORLD_SIZE / $TP_DEGREE))
ACC_STEPS=$(($GBS / $MBS / $DP))
if [ $NEURON_EXTRACT_GRAPHS_ONLY -gt 0 ]; then
STEPS_THIS_RUN=2
OUTPUT_LOG=log_compile-$NODE_ID.log
elif [ -v PERF_TEST ] && [ $PERF_TEST -gt 0 ]; then
STEPS_THIS_RUN=100
OUTPUT_LOG=log_exe-$NODE_ID.log
else
STEPS_THIS_RUN=-1
OUTPUT_LOG=log_exe-$NODE_ID.log
fi
echo TP_DEGREE=$TP_DEGREE
echo KV_REPLICATOR=$KV_REPLICATOR
echo USE_MIX_PRECISION=$USE_MIX_PRECISION
echo USE_ZERO_1=$USE_ZERO_1
echo GBS=$GBS
echo MBS=$MBS
echo TOTAL_STEPS=$TOTAL_STEPS
echo WARMUP_STEPS=$WARMUP_STEPS
echo MODEL_CONFIG_PATH=$MODEL_CONFIG_PATH
echo DATA_PATH=$DATA_PATH
echo SEQ_LEN=$SEQ_LEN
echo CHECKPOINT_DIR=$CHECKPOINT_DIR
echo EXTRA_ARGS=$EXTRA_ARGS
echo DP=$DP
echo ACC_STEPS=$ACC_STEPS
echo STEPS_THIS_RUN=$STEPS_THIS_RUN
echo OUTPUT_LOG=$OUTPUT_LOG
torchrun $DISTRIBUTED_ARGS \
tp_zero1_llama_hf_pretrain.py \
--model_path $MODEL_CONFIG_PATH \
--data_dir $DATA_PATH \
--tensor_parallel_size $TP_DEGREE \
--batch_size $MBS \
--steps_this_run $STEPS_THIS_RUN\
--max_steps $TOTAL_STEPS \
--warmup_steps $WARMUP_STEPS \
--lr 1e-5 \
--weight_decay 0.1 \
--beta1 0.9 \
--beta2 0.999 \
--grad_accum_usteps $ACC_STEPS \
--print_grad_norm \
--seq_len $SEQ_LEN \
--sequence_parallel_enabled \
--selective_checkpoint_enabled \
--logging_interval 10 \
--qkv_linear \
--kv_replicator $KV_REPLICATOR \
--use_flash_attention 1 \
--checkpoint_freq $TOTAL_STEPS \
--checkpoint_dir $CHECKPOINT_DIR \
--pretrained_weight \
$EXTRA_ARGS |& tee $OUTPUT_LOG
exit ${PIPESTATUS[0]}
ファイルのパーミッションを変更します。
chmod +x tp_zero1_tanuki_8b.sh
neuron_parallel_compile
を使用して、事前コンパイルします。
sbatch --exclusive \
--nodes 1 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile ./tp_zero1_tanuki_8b.sh"
事前コンパイルが終わると学習を実行します。同様のコマンドをneuron_parallel_compile
なしで実行します。
sbatch --exclusive \
--nodes 1 \
--cpus-per-task 128 \
--wrap="srun ./tp_zero1_tanuki_8b.sh"
チェックポイントの変換
モデルの出力先のディレクトリを環境変数に設定します。
export MODEL_OUTPUT_DIR=/fsx/models/tanuki-8b-sft
スクリプトを実行して、NeuronX DistributedのチェックポイントをTransformersのフォーマットに変換します。
latest_checkpoint=$(ls ${CHECKPOINT_DIR} | sort -t_ -k2 -rn | head -n1)
python convert_checkpoints.py \
--input_dir ${CHECKPOINT_DIR}/${latest_checkpoint}/model \
--output_dir ${MODEL_OUTPUT_DIR} \
--config ${MODEL_CONFIG_PATH} \
--tp_size ${TP_DEGREE} \
--kv_size_multiplier ${KV_REPLICATOR} \
--qkv_linear True \
--load_xser True \
--convert_to_full_state True
チャットテンプレートを書き換えて、トークナイザーを保存します。
temp="{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}"
curl https://huggingface.co/${HF_MODEL_NAME}/raw/main/tokenizer_config.json \
| jq --arg temp "${temp}" '. + {"chat_template": $temp}' \
> ${MODEL_OUTPUT_DIR}/tokenizer_config.json
curl https://huggingface.co/${HF_MODEL_NAME}/raw/main/special_tokens_map.json -o ${MODEL_OUTPUT_DIR}/special_tokens_map.json
curl https://huggingface.co/${HF_MODEL_NAME}/raw/main/tokenizer.json -o ${MODEL_OUTPUT_DIR}/tokenizer.json
ECSへの推論環境のデプロイ
学習したTanuki-8BをECSにデプロイします。モデルのデプロイにはNeuronX TGIを使用します。
環境構築
まずは環境構築を行います。クラスタの構成は下図の通りです。
ECS
ECSクラスターを作成します。以下のようなCloudFormationテンプレートを作成します。
ecs.yaml
AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create an ECS Cluster"
Parameters:
ClusterName:
Type: String
Description: "Name of the ECS Cluster to be created"
VpcId:
Type: String
Description: "ID of the VPC"
PublicSubnetId1:
Type: String
Description: "ID of the VPC public subnet"
PublicSubnetId2:
Type: String
Description: "ID of the VPC public subnet"
PrivateSubnetId1:
Type: String
Description: "ID of the VPC private subnet"
DefaultSecurityGroupId:
Type: String
Description: "ID of the default security group"
LatestECSOptimizedAMI:
Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
Description: "AMI ID"
Default: /aws/service/ecs/optimized-ami/amazon-linux-2023/neuron/recommended/image_id
InstanceType:
Type: String
Description: "Instance type"
Default: inf2.xlarge
Spot:
Type: String
Description: "Use Spot Instances if true, On-Demand if false"
Default: "false"
AllowedValues:
- "true"
- "false"
Image:
Type: String
Description: "URI of the image"
Default: ghcr.io/huggingface/neuronx-tgi:0.0.23
BucketName:
Type: String
Description: "Name of the S3 bucket"
ModelName:
Type: String
Description: "Name of the model"
Conditions:
UseSpotInstances: !Equals
- !Ref Spot
- "true"
Resources:
ECSSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Security group for ECS
SecurityGroupEgress:
- IpProtocol: -1
FromPort: -1
ToPort: -1
CidrIp: 0.0.0.0/0
VpcId: !Ref VpcId
ALBSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Security group for ALB
SecurityGroupIngress:
- IpProtocol: tcp
FromPort: 80
ToPort: 80
CidrIp: 0.0.0.0/0
VpcId: !Ref VpcId
ECSCluster:
Type: AWS::ECS::Cluster
Properties:
ClusterName: !Ref ClusterName
ClusterSettings:
- Name: containerInsights
Value: enabled
Configuration:
ExecuteCommandConfiguration:
Logging: DEFAULT
EcsInstanceRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Effect: Allow
Principal:
Service:
- ec2.amazonaws.com
Action:
- sts:AssumeRole
Path: /
ManagedPolicyArns:
- arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
- arn:aws:iam::aws:policy/AmazonS3FullAccess
IamRoleInstanceProfile:
Type: AWS::IAM::InstanceProfile
Properties:
Roles:
- !Ref EcsInstanceRole
ECSLaunchTemplate:
Type: AWS::EC2::LaunchTemplate
Properties:
LaunchTemplateData:
ImageId: !Ref LatestECSOptimizedAMI
SecurityGroupIds:
- !Ref DefaultSecurityGroupId
- !Ref ECSSecurityGroup
IamInstanceProfile:
Name: !Ref IamRoleInstanceProfile
BlockDeviceMappings:
- DeviceName: /dev/xvda
Ebs:
VolumeSize: 500
UserData:
Fn::Base64: !Sub |
#!/bin/bash
echo ECS_CLUSTER=${ClusterName} >> /etc/ecs/ecs.config
sudo yum install -y https://s3.amazonaws.com/mountpoint-s3-release/latest/x86_64/mount-s3.rpm
sudo mkdir /s3
sudo mount-s3 --allow-other ${BucketName} /s3
ECSAutoScalingGroup:
Type: AWS::AutoScaling::AutoScalingGroup
DependsOn:
- ECSCluster
- EcsInstanceRole
Properties:
MinSize: 0
MaxSize: 3
DesiredCapacity: 1
MixedInstancesPolicy:
LaunchTemplate:
LaunchTemplateSpecification:
LaunchTemplateId: !Ref ECSLaunchTemplate
Version: !GetAtt ECSLaunchTemplate.LatestVersionNumber
Overrides:
- InstanceType: !Ref InstanceType
InstancesDistribution:
OnDemandPercentageAboveBaseCapacity: !If
- UseSpotInstances
- 0
- 100
SpotAllocationStrategy: price-capacity-optimized
VPCZoneIdentifier:
- !Ref PrivateSubnetId1
EC2CapacityProvider:
Type: AWS::ECS::CapacityProvider
Properties:
AutoScalingGroupProvider:
AutoScalingGroupArn: !Ref ECSAutoScalingGroup
ManagedScaling:
Status: ENABLED
TargetCapacity: 100
ManagedTerminationProtection: DISABLED
ClusterCPAssociation:
Type: AWS::ECS::ClusterCapacityProviderAssociations
Properties:
Cluster: !Ref ClusterName
CapacityProviders:
- !Ref EC2CapacityProvider
DefaultCapacityProviderStrategy:
- Base: 0
Weight: 1
CapacityProvider: !Ref EC2CapacityProvider
ECSTaskExecutionRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Effect: Allow
Principal:
Service:
- ecs-tasks.amazonaws.com
Action:
- sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy
ECSLogGroup:
Type: AWS::Logs::LogGroup
Properties:
RetentionInDays: 7
ECSTaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
ContainerDefinitions:
- Command:
- --port
- 8080
- --model-id
- !Ref ModelName
- --max-batch-size
- 1
- --max-input-length
- 3164
- --max-total-tokens
- 4096
Essential: true
Image: !Ref Image
LogConfiguration:
LogDriver: awslogs
Options:
awslogs-group: !Ref ECSLogGroup
awslogs-region: !Ref AWS::Region
awslogs-stream-prefix: ecs
MemoryReservation: 1024
MountPoints:
- ContainerPath: /s3
ReadOnly: true
SourceVolume: s3
Name: tgi
PortMappings:
- AppProtocol: http
ContainerPort: 8080
Protocol: tcp
Privileged: true
ExecutionRoleArn: !Ref ECSTaskExecutionRole
IpcMode: host
NetworkMode: bridge
PlacementConstraints:
- Expression: attribute:ecs.os-type == linux
Type: memberOf
- Expression: !Sub attribute:ecs.instance-type == ${InstanceType}
Type: memberOf
RequiresCompatibilities:
- EC2
Volumes:
- Host:
SourcePath: /s3
Name: s3
TargetGroup:
Type: AWS::ElasticLoadBalancingV2::TargetGroup
Properties:
HealthCheckEnabled: true
HealthCheckIntervalSeconds: 5
HealthCheckPath: /health
HealthCheckProtocol: HTTP
HealthCheckTimeoutSeconds: 3
HealthyThresholdCount: 2
Port: 8080
Protocol: HTTP
ProtocolVersion: HTTP1
TargetType: instance
UnhealthyThresholdCount: 2
VpcId: !Ref VpcId
LoadBalancer:
Type: AWS::ElasticLoadBalancingV2::LoadBalancer
Properties:
IpAddressType: ipv4
LoadBalancerAttributes:
- Key: idle_timeout.timeout_seconds
Value: 600
Scheme: internet-facing
SecurityGroups:
- !Ref DefaultSecurityGroupId
- !Ref ALBSecurityGroup
Subnets:
- !Ref PublicSubnetId1
- !Ref PublicSubnetId2
Type: application
ALBLister:
Type: AWS::ElasticLoadBalancingV2::Listener
Properties:
DefaultActions:
- TargetGroupArn: !Ref TargetGroup
Type: forward
LoadBalancerArn: !Ref LoadBalancer
Port: 80
Protocol: HTTP
ECSService:
Type: AWS::ECS::Service
DependsOn: ALBLister
Properties:
Cluster: !Ref ECSCluster
DesiredCount: 1
EnableECSManagedTags: true
HealthCheckGracePeriodSeconds: 3000
LoadBalancers:
- ContainerName: tgi
ContainerPort: 8080
TargetGroupArn: !Ref TargetGroup
SchedulingStrategy: REPLICA
ServiceName: tgi
TaskDefinition: !Ref ECSTaskDefinition
Outputs:
ECSCluster:
Description: "The created cluster."
Value: !Ref ECSCluster
DNSName:
Description: "The DNS name of the load balancer."
Value: !GetAtt LoadBalancer.DNSName
クラスター名やVPC ID、サブネットID、セキュリティグループIDを環境変数に設定します。
export ECS_CLUSTER_NAME=neuronx-tgi
export VPC_ID=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='VPC'].OutputValue" \
--output text)
export PUBLIC_SUBNET_ID1=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='PublicSubnet1'].OutputValue" \
--output text)
export PUBLIC_SUBNET_ID2=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='PublicSubnet2'].OutputValue" \
--output text)
export PRIVATE_SUBNET_ID1=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='PrivateSubnet1'].OutputValue" \
--output text)
export DEFAULT_SG_ID=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${VPC_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='DefaultSecurityGroup'].OutputValue" \
--output text)
リソースをプロビジョニングし、TGIをデプロイします。
aws cloudformation deploy \
--region ${REGION} \
--capabilities CAPABILITY_IAM \
--template-file ecs.yaml \
--stack-name ${ECS_CLUSTER_NAME} \
--parameter-overrides \
ClusterName=${ECS_CLUSTER_NAME} \
VpcId=${VPC_ID} \
PublicSubnetId1=${PUBLIC_SUBNET_ID1} \
PublicSubnetId2=${PUBLIC_SUBNET_ID2} \
PrivateSubnetId1=${PRIVATE_SUBNET_ID1} \
DefaultSecurityGroupId=${DEFAULT_SG_ID} \
BucketName=${BUCKET_NAME} \
ModelName=/s3/models/tanuki-8b-sft
aws cloudformation wait stack-create-complete \
--region ${REGION} \
--stack-name ${ECS_CLUSTER_NAME}
APIの呼び出し
ALBのDNS名を取得し、環境変数に設定します。APIキーにはダミーの値を設定します。
dns_name=$(aws cloudformation describe-stacks \
--region ${REGION} \
--stack-name ${ECS_CLUSTER_NAME} \
--query "Stacks[0].Outputs[?OutputKey=='DNSName'].OutputValue" \
--output text)
export OPENAI_BASE_URL=http://${dns_name}/v1
export OPENAI_API_KEY=dummy
APIを呼び出します。
curl ${OPENAI_BASE_URL}/chat/completions \
-s \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{"role": "system", "content": "あなたは親切なアシスタントです。"},
{"role": "user", "content": "こんにちは。おもしろい話をしてください。"}
],
"max_tokens": 1024,
"temperature": 0.3,
"top_p": 0.3,
"stream": true
}' \
| sed 's/data://' \
| sed 's/\[DONE\]//' \
| jq --stream -j --unbuffered 'fromstream(1|truncate_stream(inputs))[0].delta.content // ""'
OpenAIのクライアントライブラリを使用することもできます。
from openai import OpenAI
client = OpenAI()
stream = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "あなたは親切なアシスタントです。" },
{"role": "user", "content": "こんにちは。怖い話をしてください。"}
],
max_tokens=1024,
temperature=0.3,
top_p=0.3,
stream=True
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="")
リソースの削除
リソースを削除します。
aws cloudformation delete-stack --region ${REGION} --stack-name ${PCLUSTER_NAME}
aws cloudformation delete-stack --region ${REGION} --stack-name ${ECS_CLUSTER_NAME}
aws cloudformation delete-stack --region ${REGION} --stack-name ${VPC_NAME}
S3バケットの削除時にはバケットを事前に空にする必要があります。
aws cloudformation delete-stack --region ${REGION} --stack-name ${BUCKET_NAME}
-
ここではAZを2つ作成していますが、Parallel ClusterやECSで使用するのはAZ1のみです。ALBの仕様上、2つ以上のAZが必要なため2つ作成しています。 ↩︎
Discussion