ð çæAI掻çšã¹ãã«0â100ããŒãããã
ð çæAI掻çšã¹ãã«0â100ããŒãããã
ãã®ã³ã³ãã³ãã¯Claude4.0ã«ããèªåçæããããã®ã§ãã
ð ç®æ¬¡
- ã¯ããã« - ãã®ããŒããããã®äœ¿ãæ¹
- ã¬ãã«0-10: è¶ åçŽç·š - AIãšã®å¯Ÿè©±åºç€
- ã¬ãã«11-25: åçŽç·š - åºæ¬çãªããã³ããææ³
- ã¬ãã«26-40: åäžçŽç·š - æ¥å掻çšã®ç¬¬äžæ©
- ã¬ãã«41-55: äžçŽç·š - ããã³ãããšã³ãžãã¢ãªã³ã°
- ã¬ãã«56-70: äžäžçŽç·š - å°éæ¥åãžã®å¿çš
- ã¬ãã«71-85: äžçŽç·š - é«åºŠãªæŽ»çšææ³
- ã¬ãã«86-100: è¶ äžçŽç·š - ãšãã¹ããŒãã¬ãã«
- ä»é²: ãã©ãã«ã·ã¥ãŒãã£ã³ã°é
ð¯ ã¯ããã« - ãã®ããŒããããã®äœ¿ãæ¹
åºæ¬ã«ãŒã«
- äžããé çªã«å®æœ - åããã³ãããå¿ ãé çªã«å®æœããŠãã ãã
- ã³ããïŒå®è¡ - ããã³ããäŸããã®ãŸãŸã³ããŒããŠå®è¡
- çµæãèŠ³å¯ - AIã®åçãå¿ ãèªãã§çè§£ãã
- æ¹åããŠåå®è¡ - ããè¯ãçµæãåŸãããä¿®æ£ããŠåå®è¡
- ããããªããã°AIã«èã - çè§£ã§ããªãéšåã¯ãããã¯ã©ãããæå³ïŒããšAIã«è³ªå
ð¡ æéèŠãã¯ããã¯: ã¡ã¿ããã³ãã
å°ã£ãã以äžã®ããã³ããã䜿ãïŒ
ç§ã¯[ããªãã®åœ¹è·/æ¥åå
容]ã§ãã
[å®çŸãããããš]ãéæãããã®ã§ããã
ã©ã®ãããªããã³ãããæžãã°è¯ããã
å
·äœäŸã3ã€ç€ºããŠãã ããã
ð± ã¬ãã«0-10: è¶ åçŽç·š - AIãšã®å¯Ÿè©±åºç€ {#ã¬ãã«0-10}
ããã³ãã001: æåã®äžæ©
ããã«ã¡ã¯ãç§ã¯ITã³ã³ãµã«ã¿ã³ãã§ãã
ããªãã¯äœãã§ããŸããïŒ
åŠç¿ãã€ã³ã: AIã®åºæ¬çãªèœåãçè§£ãã
ããã³ãã002: ç°¡åãªè³ªå
Javaãšã¯äœã§ããïŒ
åå¿è
ã«ããããããã«èª¬æããŠãã ããã
åŠç¿ãã€ã³ã: 説æã®ã¬ãã«æå®æ¹æ³
ããã³ãã003: 圹å²èšå®ã®åºç€
ããªãã¯åªç§ãªITã³ã³ãµã«ã¿ã³ãã§ãã
ã¯ã©ã€ã¢ã³ãã«ãDXæšé²ãã«ã€ããŠ
ãããããã説æããŠãã ããã
åŠç¿ãã€ã³ã: AIã«åœ¹å²ãäžãã广
ããã³ãã004: å ·äœçãªæç€º
以äžã®å
容ãç®æ¡æžãã§5ã€ã«ãŸãšããŠãã ããïŒ
åºå¹¹ç³»ã·ã¹ãã ã®ç¹åŸŽ
åŠç¿ãã€ã³ã: åºå圢åŒã®æå®æ¹æ³
ããã³ãã005: 段éçãªèª¬æèŠæ±
ããŒã¿ããŒã¹ã«ã€ããŠ
1. äžèšã§èª¬æ
2. 3è¡ã§èª¬æ
3. åå¿è
åãã«è©³ãã説æ
ããŠãã ããã
åŠç¿ãã€ã³ã: 段éçãªæ å ±ååŸ
ããã³ãã006: æ¯èŒã®äŸé Œ
ãªã³ãã¬ãã¹ãšã¯ã©ãŠãã®éãã
衚圢åŒã§æ¯èŒããŠãã ããã
åŠç¿ãã€ã³ã: 衚圢åŒã§ã®åºåæå®
ããã³ãã007: å®äŸã®èŠæ±
APIã®äœ¿çšäŸã
å®éã®ã³ãŒããå«ããŠ3ã€ç€ºããŠãã ããã
åŠç¿ãã€ã³ã: å ·äœäŸã®èŠæ±æ¹æ³
ããã³ãã008: ãšã©ãŒè§£æ±ºã®çžè«
以äžã®ãšã©ãŒãåºãŸãããåå ãšè§£æ±ºæ¹æ³ãæããŠãã ããïŒ
[ãšã©ãŒã¡ãã»ãŒãžãããã«è²Œã]
åŠç¿ãã€ã³ã: ãã©ãã«ã·ã¥ãŒãã£ã³ã°ã®äŸé Œ
ããã³ãã009: èŠçŽã®äŸé Œ
以äžã®æç« ã3è¡ã§èŠçŽããŠãã ããïŒ
[é·ãæç« ãããã«è²Œã]
åŠç¿ãã€ã³ã: èŠçŽæ©èœã®æŽ»çš
ããã³ãã010: ç¶ç¶çãªå¯Ÿè©±
å
ã»ã©ã®èª¬æã«ã€ããŠã
ããå°ã詳ããæããŠãã ããã
ç¹ã«[å
·äœçãªéšå]ã«ã€ããŠç¥ãããã§ãã
åŠç¿ãã€ã³ã: æèãæŽ»ãããç¶ç¶å¯Ÿè©±
ð ã¬ãã«11-25: åçŽç·š - åºæ¬çãªããã³ããææ³ {#ã¬ãã«11-25}
ããã³ãã011: å¶çŽæ¡ä»¶ã®èšå®
300æå以å
ã§ã
ã·ã¹ãã éçºã®Våã¢ãã«ã説æããŠãã ããã
å°éçšèªã¯äœ¿ããªãã§ãã ããã
åŠç¿ãã€ã³ã: è€æ°ã®å¶çŽæ¡ä»¶ã®çµã¿åãã
ããã³ãã012: ãã«ãœãèšå®
ããªãã¯20幎ã®çµéšãæã€
åºå¹¹ç³»ã·ã¹ãã ã®ã¢ãŒããã¯ãã§ãã
æ°äººãšã³ãžãã¢ã«åããŠã
ããŒã¿ããŒã¹èšèšã®åºæ¬ãæããŠãã ããã
åŠç¿ãã€ã³ã: 詳现ãªãã«ãœãèšå®
ããã³ãã013: ã¹ããããã€ã¹ããã
Gitã®åºæ¬çãªäœ¿ãæ¹ã
ã¹ããããã€ã¹ãããã§æããŠãã ããã
åã¹ãããã«ã³ãã³ãäŸãå«ããŠãã ããã
åŠç¿ãã€ã³ã: 段éçãªèª¬æã®èŠæ±
ããã³ãã014: åææ¡ä»¶ã®æç€º
åææ¡ä»¶ïŒ
- Java Spring Bootã䜿çš
- PostgreSQLããŒã¿ããŒã¹
- RESTful API
äžèšã®æ¡ä»¶ã§ãç°¡åãªCRUDã¢ããªã±ãŒã·ã§ã³ã®
æ§é ãèšèšããŠãã ããã
åŠç¿ãã€ã³ã: åææ¡ä»¶ã®æç¢ºå
ããã³ãã015: åºåãã©ãŒãããæå®
以äžã®åœ¢åŒã§ã·ã¹ãã èŠä»¶å®çŸ©æžã®
ãã³ãã¬ãŒããäœæããŠãã ããïŒ
1. æŠèŠ
1.1 ç®ç
1.2 ã¹ã³ãŒã
2. æ©èœèŠä»¶
2.1 [æ©èœå]
- 説æïŒ
- å
¥åïŒ
- åºåïŒ
- åŠçïŒ
åŠç¿ãã€ã³ã: 詳现ãªåºå圢åŒã®æå®
ããã³ãã016: äŸç€ºã«ããåŠç¿
SQLã®JOINã«ã€ããŠã
以äžã®åœ¢åŒã§èª¬æããŠãã ããïŒ
1. æŠå¿µã®èª¬æ
2. æ§æ
3. å®éã®ããŒãã«ã䜿ã£ãå
·äœäŸ
4. ããããééã
5. ãã¹ããã©ã¯ãã£ã¹
åŠç¿ãã€ã³ã: æ§é åããã説æã®èŠæ±
ããã³ãã017: æ¹å€çæèã®ä¿é²
ãã€ã¯ããµãŒãã¹ã¢ãŒããã¯ãã£ã®
ã¡ãªãããšãã¡ãªãããæãã
ã©ã®ãããªå Žåã«æ¡çšãã¹ããã
æ¡çšãã¹ãã§ãªããã説æããŠãã ããã
åŠç¿ãã€ã³ã: ãã©ã³ã¹ã®åããåæ
ããã³ãã018: ã³ãŒãçæåºç€
以äžã®èŠä»¶ã§Javaã®ã¯ã©ã¹ãäœæããŠãã ããïŒ
- ã¯ã©ã¹å: Employee
- ãã£ãŒã«ã: id(int), name(String), salary(double)
- getter/setterã¡ãœãã
- toStringã¡ãœãã
åŠç¿ãã€ã³ã: åºæ¬çãªã³ãŒãçæ
ããã³ãã019: ããã¥ã¡ã³ãäœæ
以äžã®APIãšã³ããã€ã³ãã®
ããã¥ã¡ã³ããäœæããŠãã ããïŒ
POST /api/users
- ãªã¯ãšã¹ãããã£: { "name": "string", "email": "string" }
- ã¬ã¹ãã³ã¹: { "id": "number", "name": "string", "email": "string" }
åŠç¿ãã€ã³ã: APIææžã®äœæ
ããã³ãã020: ãã§ãã¯ãªã¹ãçæ
æ¬çªç°å¢ãžã®ãããã€åãã§ãã¯ãªã¹ãã
äœæããŠãã ããã
ã»ãã¥ãªãã£ãããã©ãŒãã³ã¹ã
ããã¯ã¢ããã®èгç¹ãå«ããŠãã ããã
åŠç¿ãã€ã³ã: å æ¬çãªãã§ãã¯ãªã¹ãäœæ
ããã³ãã021: ãã©ãã«ã·ã¥ãŒãã£ã³ã°ã¬ã€ã
ãããŒã¿ããŒã¹æ¥ç¶ãšã©ãŒããçºçããå Žåã®
ãã©ãã«ã·ã¥ãŒãã£ã³ã°æé ãã
ãããŒãã£ãŒã圢åŒã§äœæããŠãã ããã
åŠç¿ãã€ã³ã: åé¡è§£æ±ºããã»ã¹ã®æ§é å
ããã³ãã022: ãã¹ããã©ã¯ãã£ã¹
Javaã§ã®äŸå€åŠçã®ãã¹ããã©ã¯ãã£ã¹ã
5ã€æããããããæªãäŸãšè¯ãäŸã®
ã³ãŒãã瀺ããŠãã ããã
åŠç¿ãã€ã³ã: å®äŸã䜿ã£ãåŠç¿
ããã³ãã023: ã¬ãã¥ãŒã®äŸé Œ
以äžã®ã³ãŒããã¬ãã¥ãŒãã
æ¹åç¹ãææããŠãã ããïŒ
[ã³ãŒããããã«è²Œã]
ç¹ã«ä»¥äžã®èгç¹ã§ã¬ãã¥ãŒããŠãã ããïŒ
- å¯èªæ§
- ããã©ãŒãã³ã¹
- ã»ãã¥ãªãã£
åŠç¿ãã€ã³ã: ã³ãŒãã¬ãã¥ãŒã®æŽ»çš
ããã³ãã024: ãã¹ãã±ãŒã¹çæ
以äžã®ã¡ãœããã®ãŠããããã¹ãã±ãŒã¹ã
JUnitã§äœæããŠãã ããïŒ
public int divide(int a, int b) {
return a / b;
}
æ£åžžç³»ãç°åžžç³»ãå¢çå€ãå«ããŠãã ããã
åŠç¿ãã€ã³ã: ãã¹ãèšèšã®èªåå
ããã³ãã025: ãªãã¡ã¯ã¿ãªã³ã°ææ¡
以äžã®ã³ãŒãããªãã¡ã¯ã¿ãªã³ã°ããŠãã ããïŒ
[è€éãªã³ãŒããããã«è²Œã]
SOLIDååã«åŸã£ãŠæ¹åãã
ãªããã®æ¹åãå¿
èŠãã説æããŠãã ããã
åŠç¿ãã€ã³ã: èšèšååã«åºã¥ãæ¹å
ð§ ã¬ãã«26-40: åäžçŽç·š - æ¥å掻çšã®ç¬¬äžæ© {#ã¬ãã«26-40}
ããã³ãã026: è°äºé²äœæ
以äžã®ã¡ã¢ããæ£åŒãªè°äºé²ãäœæããŠãã ããïŒ
æ¥æ: 2024/12/20 14:00-15:00
åå è
: å±±ç°ãç°äžãéŽæš
è°é¡: æ°ã·ã¹ãã ã®èŠä»¶å®çŸ©
- å±±ç°: çŸè¡ã·ã¹ãã ã®åé¡ç¹ã説æ
- ç°äž: äºç®ã¯3000äžåãŸã§
- éŽæš: 3ææ«ãŸã§ã«å®æå¿
èŠ
決å®äºé
: æ¥é±ãŸã§ã«èŠä»¶å®çŸ©æžãã©ããäœæ
åŠç¿ãã€ã³ã: éæ§é åæ å ±ã®æ§é å
ããã³ãã027: ã¡ãŒã«ææ¡äœæ
以äžã®ç¶æ³ã§ã¯ã©ã€ã¢ã³ããžã®ã¡ãŒã«ãäœæããŠãã ããïŒ
- ç¶æ³: ãããžã§ã¯ãã1é±éé
å»¶
- åå : å€éšAPIã®ä»æ§å€æŽ
- 察ç: ãªãœãŒã¹è¿œå æå
¥ã§é
å»¶ã3æ¥ã«ççž®äºå®
- ããŒã³: è¬çœªãã€ã€ãååãã«
åŠç¿ãã€ã³ã: ããžãã¹ã¡ãŒã«ã®äœæ
ããã³ãã028: æè¡éžå®ã®æ¯æŽ
以äžã®èŠä»¶ã«æé©ãªæè¡ã¹ã¿ãã¯ãææ¡ããŠãã ããïŒ
- Webã¢ããªã±ãŒã·ã§ã³
- åææ¥ç¶æ°: æå€§1000人
- ããŒã¿é: 100GBçšåºŠ
- äºç®: éå®ç
- éçºæé: 6ã¶æ
- ããŒã ã¹ãã«: Javaçµéšè
ãå€ã
éžå®çç±ãå«ããŠèª¬æããŠãã ããã
åŠç¿ãã€ã³ã: å€è§çãªæè¡éžå®
ããã³ãã029: ãããžã§ã¯ãèšç»
以äžã®ãããžã§ã¯ãã®WBSãäœæããŠãã ããïŒ
ãããžã§ã¯ã: ECãµã€ããªãã¥ãŒã¢ã«
æé: 6ã¶æ
äž»èŠæ©èœ:
- åå管ç
- 泚æç®¡ç
- 顧客管ç
- 決æžé£æº
åã¿ã¹ã¯ã«æ³å®å·¥æ°ãèšèŒããŠãã ããã
åŠç¿ãã€ã³ã: ãããžã§ã¯ãèšç»ã®æ§é å
ããã³ãã030: SQLæé©å
以äžã®SQLã¯ãšãªãæé©åããŠãã ããïŒ
SELECT * FROM orders o
WHERE o.customer_id IN (
SELECT c.id FROM customers c
WHERE c.created_at > '2024-01-01'
)
AND o.status = 'completed'
å®è¡èšç»ã®æ¹åãã€ã³ãã説æããŠãã ããã
åŠç¿ãã€ã³ã: ããã©ãŒãã³ã¹ãã¥ãŒãã³ã°
ããã³ãã031: ã¢ãŒããã¯ãã£å³äœæ
以äžã®ã·ã¹ãã ã®ã¢ãŒããã¯ãã£å³ã
PlantUMLã³ãŒãã§äœæããŠãã ããïŒ
- ããã³ããšã³ã: React
- API: Spring Boot
- ããŒã¿ããŒã¹: PostgreSQL
- ãã£ãã·ã¥: Redis
- ã¡ãã»ãŒãžãã¥ãŒ: RabbitMQ
åŠç¿ãã€ã³ã: å³è¡šã®ã³ãŒãå
ããã³ãã032: ã»ãã¥ãªãã£èšºæ
以äžã®ã³ãŒãã®ã»ãã¥ãªãã£è匱æ§ãææãã
ä¿®æ£æ¹æ³ãæç€ºããŠãã ããïŒ
[è匱æ§ã®ããã³ãŒããããã«è²Œã]
OWASP Top 10ãåèã«èšºæããŠãã ããã
åŠç¿ãã€ã³ã: ã»ãã¥ãªãã£èгç¹ã§ã®åæ
ããã³ãã033: éå®³å ±åæžäœæ
以äžã®æ
å ±ããéå®³å ±åæžãäœæããŠãã ããïŒ
çºçæ¥æ: 2024/12/20 15:30
åŸ©æ§æ¥æ: 2024/12/20 16:45
圱é¿: 泚æåŠçã1æé15å忢
åå : DBãµãŒããŒã®ãã£ã¹ã¯å®¹éäžè¶³
察å¿: äžèŠãã°åé€ããã£ã¹ã¯å®¹éæ¡åŒµ
åŠç¿ãã€ã³ã: ã€ã³ã·ãã³ãææžå
ããã³ãã034: APIèšèš
ãŠãŒã¶ãŒç®¡çã·ã¹ãã ã®REST APIãèšèšããŠãã ããã
以äžã®æ©èœãå«ããŠãã ããïŒ
- ãŠãŒã¶ãŒç»é²
- ãã°ã€ã³/ãã°ã¢ãŠã
- ãããã£ãŒã«ååŸ/æŽæ°
- ãã¹ã¯ãŒã倿Ž
åãšã³ããã€ã³ãã®URLãã¡ãœããã
ãªã¯ãšã¹ã/ã¬ã¹ãã³ã¹äŸã瀺ããŠãã ããã
åŠç¿ãã€ã³ã: RESTful APIèšèš
ããã³ãã035: ããŒã¿ã¢ããªã³ã°
峿žé€šç®¡çã·ã¹ãã ã®ERDãèšèšããŠãã ããã
以äžã®ãšã³ãã£ãã£ãå«ããŠãã ããïŒ
- æžç±
- å©çšè
- 貞åºèšé²
- èè
- ã«ããŽãª
é¢é£æ§ãšäž»èŠãªå±æ§ãå®çŸ©ããŠãã ããã
åŠç¿ãã€ã³ã: ããŒã¿ããŒã¹èšèš
ããã³ãã036: ãããåŠçèšèš
æ¯æ¥æ·±å€2æã«å®è¡ãã売äžéèšãããã®
åŠçãããŒãèšèšããŠãã ããã
èŠä»¶ïŒ
- 忥ã®å
šæ³šæããŒã¿ãéèš
- ååå¥ã顧客å¥ã®å£²äžãèšç®
- çµæãCSVãšDBã«ä¿å
- ãšã©ãŒæã¯ç®¡çè
ã«ã¡ãŒã«éç¥
åŠç¿ãã€ã³ã: ãããåŠçã®èšèš
ããã³ãã037: ç§»è¡èšç»äœæ
ãªã³ãã¬ãã¹ããAWSãžã®ç§»è¡èšç»ã
äœæããŠãã ããã
çŸç¶ïŒ
- WebãµãŒããŒ: 3å°
- DBãµãŒããŒ: 2å°ïŒã¬ããªã±ãŒã·ã§ã³ïŒ
- ãã¡ã€ã«ãµãŒããŒ: 1å°ïŒ1TBïŒ
- 皌åæé: 24æé365æ¥
åŠç¿ãã€ã³ã: ã¯ã©ãŠãç§»è¡èšç»
ããã³ãã038: ããã©ãŒãã³ã¹ãã¹ãèšç»
ECãµã€ãã®ããã©ãŒãã³ã¹ãã¹ãèšç»ã
äœæããŠãã ããã
ç®æšïŒ
- åææ¥ç¶æ°: 1000人
- ã¬ã¹ãã³ã¹ã¿ã€ã : 3ç§ä»¥å
- å¯çšæ§: 99.9%
ãã¹ãã·ããªãªãšããŒã«ãææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: éæ©èœèŠä»¶ã®ãã¹ã
ããã³ãã039: éçšæé æžäœæ
Webã¢ããªã±ãŒã·ã§ã³ã®æ¥æ¬¡éçšæé æžã
äœæããŠãã ããã
å«ããé
ç®ïŒ
- ãã°ç¢ºèª
- ããã¯ã¢ãã確èª
- ãªãœãŒã¹äœ¿çšç確èª
- ã¢ã©ãŒã察å¿
åŠç¿ãã€ã³ã: éçšããã¥ã¡ã³ãäœæ
ããã³ãã040: èŠç©ããäœææ¯æŽ
以äžã®æ©èœéçºã®å·¥æ°èŠç©ããã
äœæããŠãã ããïŒ
- ãŠãŒã¶ãŒèªèšŒæ©èœïŒOAuth察å¿ïŒ
- ååæ€çŽ¢æ©èœïŒå
šææ€çŽ¢ïŒ
- 泚æåŠçæ©èœïŒæ±ºæžé£æºå«ãïŒ
- 管çç»é¢ïŒCRUDæäœïŒ
åæ©èœã®è©³çްã¿ã¹ã¯ãšå·¥æ°ã瀺ããŠãã ããã
åŠç¿ãã€ã³ã: ãããžã§ã¯ãèŠç©ãã
ð ã¬ãã«41-55: äžçŽç·š - ããã³ãããšã³ãžãã¢ãªã³ã° {#ã¬ãã«41-55}
ããã³ãã041: Few-shot Learning
以äžã®äŸãåèã«ãæ°ãããã¹ãã±ãŒã¹ãäœæããŠãã ããïŒ
äŸ1:
å
¥å: null
æåŸ
çµæ: NullPointerException
説æ: nullå€ã®åŠç確èª
äŸ2:
å
¥å: ""
æåŸ
çµæ: 空æååãšã©ãŒ
説æ: 空æååã®æ€èšŒ
äŸ3:
å
¥å: "test@example.com"
æåŸ
çµæ: æ£åžžåŠç
説æ: æ£ããã¡ãŒã«ã¢ãã¬ã¹åœ¢åŒ
æ°ãããã¹ãã±ãŒã¹: ãã¹ã¯ãŒãæ€èšŒæ©èœ
åŠç¿ãã€ã³ã: äŸç€ºã«ããåŠç¿èªå°
ããã³ãã042: Chain of Thought
以äžã®åé¡ã段éçã«èããŠè§£æ±ºããŠãã ããïŒ
ã·ã¹ãã ã®ã¬ã¹ãã³ã¹ãé
ãã
æ¯æ¥14æé ã«ç¹ã«é
ããªãã
CPUãšã¡ã¢ãªã¯æ£åžžç¯å²å
ã
ããŒã¿ããŒã¹ã®ã³ãã¯ã·ã§ã³æ°ãäžéã«è¿ãã
æèéçšãæç€ºããªããã
åå ãšå¯Ÿçãå°ãåºããŠãã ããã
åŠç¿ãã€ã³ã: æèéçšã®å¯èŠå
ããã³ãã043: 圹å²ã®è©³çްå
ããªãã¯ä»¥äžã®ç¹æ§ãæã€ã¢ãŒããã¯ãã§ãïŒ
- çµéš: éèç³»ã·ã¹ãã 15幎
- å°é: é«å¯çšæ§ã·ã¹ãã èšèš
- éèŠ: ã»ãã¥ãªãã£ãšã³ã³ãã©ã€ã¢ã³ã¹
- æ§æ Œ: æ
éã§è©³çްå¿å
ãã®ç«å Žãããä»®æ³é貚ååŒã·ã¹ãã ã®
ã¢ãŒããã¯ãã£ãææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: 詳现ãªãã«ãœãèšå®
ããã³ãã044: å¶çŽæ¡ä»¶ã®è€éå
以äžã®å¶çŽäžã§ã·ã¹ãã èšèšãè¡ã£ãŠãã ããïŒ
æè¡çå¶çŽïŒ
- èšèª: Java 11以äž
- ãã¬ãŒã ã¯ãŒã¯: Spring Boot 2.x
- DB: PostgreSQL 12以äž
ããžãã¹å¶çŽïŒ
- äºç®: 2000äžå
- æé: 4ã¶æ
- ããŒã : 5åïŒJavaçµéš3幎以äžïŒ
éæ©èœèŠä»¶ïŒ
- å¯çšæ§: 99.5%以äž
- ã¬ã¹ãã³ã¹: 3ç§ä»¥å
- åææ¥ç¶: 500人
åŠç¿ãã€ã³ã: å€å±€çãªå¶çŽç®¡ç
ããã³ãã045: ååŸ©çæ¹å
以äžã®ã³ãŒãã3åæ¹åããŠãã ããã
ååã§ç°ãªã芳ç¹ããæ¹åããŠãã ããïŒ
1åç®: å¯èªæ§ã®åäž
2åç®: ããã©ãŒãã³ã¹ã®æé©å
3åç®: ä¿å®æ§ã®æ¹å
[æ¹å察象ã®ã³ãŒããããã«è²Œã]
åæ¹åã§äœã倿Žããã説æããŠãã ããã
åŠç¿ãã€ã³ã: 段éçãªå質åäž
ããã³ãã046: ã³ã³ããã¹ãæ³šå ¥
èæ¯æ
å ±ïŒ
åœç€Ÿã¯åŸæ¥å¡500åã®è£œé æ¥ã§ãã
çŸåšãExcel管çããŠããåšåº«ç®¡çã
ã·ã¹ãã åããããšèããŠããŸãã
幎éååŒé¡ã¯çŽ10ååã
SKUæ°ã¯çŽ3000ç¹ã§ãã
ãã®èæ¯ãèžãŸããŠã
åšåº«ç®¡çã·ã¹ãã ã®èŠä»¶å®çŸ©ã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: èæ¯æ å ±ã®æŽ»çš
ããã³ãã047: åºåã®æ§é å匷å
以äžã®JSON圢åŒã§
ãã€ã¯ããµãŒãã¹ã®èšèšãåºåããŠãã ããïŒ
{
"services": [
{
"name": "ãµãŒãã¹å",
"responsibility": "責å",
"api": [
{
"endpoint": "URL",
"method": "HTTPã¡ãœãã",
"description": "説æ"
}
],
"database": {
"type": "DBã¿ã€ã",
"tables": ["ããŒãã«å"]
},
"dependencies": ["äŸåãµãŒãã¹"]
}
]
}
ECãµã€ããäŸã«5ã€ã®ãµãŒãã¹ãèšèšããŠãã ããã
åŠç¿ãã€ã³ã: å³å¯ãªåºååœ¢åŒæå®
ããã³ãã048: æ¹å€çã¬ãã¥ãŒ
以äžã®ã¢ãŒããã¯ãã£èšèšãã¬ãã¥ãŒãã
æœåšçãªåé¡ç¹ã5ã€ä»¥äžææããŠãã ããïŒ
[ã¢ãŒããã¯ãã£ã®èª¬æãããã«èšèŒ]
ååé¡ç¹ã«ã€ããŠïŒ
1. åé¡ã®èª¬æ
2. çºçããå¯èœæ§ã®ãã圱é¿
3. æ¹åæ¡
ãæç€ºããŠãã ããã
åŠç¿ãã€ã³ã: æ¹å€çåæèœå
ããã³ãã049: ã·ãã¥ã¬ãŒã·ã§ã³
以äžã®ã·ããªãªã§ã·ã¹ãã ã®åäœã
ã·ãã¥ã¬ãŒã·ã§ã³ããŠãã ããïŒ
ã·ã¹ãã : ECãµã€ã
ã€ãã³ã: ãã©ãã·ã¥ã»ãŒã«éå§
æ¡ä»¶:
- éåžžæã®10åã®ã¢ã¯ã»ã¹
- åšåº«100åã®åå
- 1000人ãåæè³Œå
¥è©Šè¡
æç³»åã§äœãèµ·ãããã
ã©ããªåé¡ãçºçããã
è©³çŽ°ã«æåããŠãã ããã
åŠç¿ãã€ã³ã: åçã·ããªãªåæ
ããã³ãã050: ã¡ã¿ããã³ããæŽ»çš
ç§ã¯ä»¥äžã®èª²é¡ã解決ãããã§ãïŒ
ãã¬ã¬ã·ãŒã·ã¹ãã ã®ãã€ã¯ããµãŒãã¹åã
ãã®èª²é¡ã解決ããããã«ã
ç§ãæ¬¡ã«æããã¹ã5ã€ã®è³ªåã
åªå
é äœä»ãã§ææ¡ããŠãã ããã
ãŸããããããã®è³ªåã«å¯Ÿãã
ããã³ããã®å
·äœäŸã瀺ããŠãã ããã
åŠç¿ãã€ã³ã: ããã³ããèªå·±çæ
ããã³ãã051: æ¯èŒåæã®æ·±å
以äžã®3ã€ã®ã¢ãããŒãã
6ã€ã®è©äŸ¡è»žã§æ¯èŒããŠãã ããïŒ
ã¢ãããŒãïŒ
1. ã¢ããªã·ãã¯
2. ãã€ã¯ããµãŒãã¹
3. ãµãŒããŒã¬ã¹
è©äŸ¡è»žïŒ
- éçºé床
- éçšã³ã¹ã
- ã¹ã±ãŒã©ããªãã£
- ä¿å®æ§
- ããŒã å¿
èŠã¹ãã«
- å°å
¥ãªã¹ã¯
ç¹æ°ïŒ1-5ïŒãšçç±ã衚圢åŒã§ç€ºããŠãã ããã
åŠç¿ãã€ã³ã: 倿¬¡å è©äŸ¡
ããã³ãã052: ãã¡ã€ã³ç¥èã®æŽ»çš
ããªãã¯æ¥æ¬ã®éèèŠå¶ã«ç²Ÿéãã
ã·ã¹ãã ã¢ãŒããã¯ãã§ãã
以äžã®èŠä»¶ãæºãã
ãªã³ã©ã€ã³éè¡ã·ã¹ãã ã®
ã»ãã¥ãªãã£ã¢ãŒããã¯ãã£ã
èšèšããŠãã ããïŒ
- éèåºã¬ã€ãã©ã€ã³æºæ
- PCI DSSæºæ
- 24æé365æ¥çšŒå
ç¹ã«èŠå¶èŠä»¶ãšã®å¯Ÿå¿ã
æç¢ºã«ããŠãã ããã
åŠç¿ãã€ã³ã: å°éç¥èã®é©çš
ããã³ãã053: ãšã©ãŒãã³ããªã³ã°èšèš
以äžã®ã·ã¹ãã ã®å
æ¬çãª
ãšã©ãŒãã³ããªã³ã°æŠç¥ãèšèšããŠãã ããïŒ
ã·ã¹ãã æ§æïŒ
- ããã³ããšã³ãïŒReactïŒ
- BFFïŒNode.jsïŒ
- ãã€ã¯ããµãŒãã¹ïŒJavaïŒ
- ããŒã¿ããŒã¹ïŒPostgreSQLïŒ
- å€éšAPI飿º
åã¬ã€ã€ãŒã§ã®ãšã©ãŒåŠçæ¹éã
ãšã©ãŒã³ãŒãäœç³»ã
ãã°èšèšãå«ããŠãã ããã
åŠç¿ãã€ã³ã: 暪æçèšèš
ããã³ãã054: ããã©ãŒãã³ã¹æé©å
以äžã®ããã«ããã¯åæãè¡ãã
æé©åæ¡ãæç€ºããŠãã ããïŒ
çç¶ïŒ
- æ9æã«ã¬ã¹ãã³ã¹é
å»¶
- ç¹å®ã®APIã®ã¿åœ±é¿
- CPU䜿çšçã¯50%çšåºŠ
- ã¡ã¢ãªã¯äœè£ãã
- DBæ¥ç¶ã¯æ£åžž
APMããŒã«ã®ããŒã¿ïŒ
- 該åœAPIå¹³åã¬ã¹ãã³ã¹: 15ç§
- DB ã¯ãšãªæé: 2ç§
- å€éšAPIåŒã³åºã: 12ç§
段éçãªèª¿æ»æé ãš
察çãææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: åé¡åæããã»ã¹
ããã³ãã055: ã¢ãŒããã¯ãã£é²å
以äžã®ã·ã¹ãã ã3幎ãããŠ
段éçã«é²åãããèšç»ãç«ãŠãŠãã ããïŒ
çŸç¶ïŒ
- ã¢ããªã·ãã¯ã¢ããªã±ãŒã·ã§ã³
- åäžããŒã¿ããŒã¹
- æ¥æ¬¡ãããåŠç
ç®æšïŒ
- ãã€ã¯ããµãŒãã¹å
- ã€ãã³ãããªãã³
- ãªã¢ã«ã¿ã€ã åŠç
å幎床ã®ç®æšãšç§»è¡æé ã
ãªã¹ã¯ãšå¯Ÿçå«ããŠæç€ºããŠãã ããã
åŠç¿ãã€ã³ã: é·æèšç»ç«æ¡
ð ã¬ãã«56-70: äžäžçŽç·š - å°éæ¥åãžã®å¿çš {#ã¬ãã«56-70}
ããã³ãã056: è€éãªãããã°æ¯æŽ
以äžã®ç¶æ³ã§åé¡ãç¹å®ããŠãã ããïŒ
çç¶ïŒ
- æ¬çªç°å¢ã§ã®ã¿çºç
- æ¯é±æææ¥ã®ååäž
- ç¹å®ãŠãŒã¶ãŒã®ã¿åœ±é¿
- ãã°ã«ãšã©ãŒãªã
- ç»é¢ãçœããªã
ç°å¢æ
å ±ïŒ
- React + Redux
- nginx ãªããŒã¹ãããã·
- Spring Boot ããã¯ãšã³ã
- PostgreSQL
- Redis ã»ãã·ã§ã³ç®¡ç
èª¿æ»æé ãšèããããåå ã
åªå
床ä»ãã§æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: è€éãªåé¡ã®åãåã
ããã³ãã057: ã¢ãŒããã¯ãã£ã¬ãã¥ãŒèªåå
以äžã®èгç¹ã§ã¢ãŒããã¯ãã£ã¬ãã¥ãŒã®
ãã§ãã¯ãªã¹ããäœæãã
åé
ç®ã®ç¢ºèªæ¹æ³ã瀺ããŠãã ããïŒ
1. ã»ãã¥ãªãã£
2. ã¹ã±ãŒã©ããªãã£
3. å¯çšæ§
4. ä¿å®æ§
5. ã³ã¹ãå¹ç
6. æè¡çè² åµ
ã¬ãã¥ãŒçµæãç¹æ°åãã
è©äŸ¡åºæºãå®çŸ©ããŠãã ããã
åŠç¿ãã€ã³ã: å質è©äŸ¡ã®äœç³»å
ããã³ãã058: ã€ã³ãã©ã³ãŒãçæ
以äžã®èŠä»¶ã§Terraformã³ãŒããçæããŠãã ããïŒ
AWSç°å¢ïŒ
- VPCïŒ3ã€ã®AZïŒ
- ãããªãã¯/ãã©ã€ããŒããµãããã
- ALB + Auto ScalingïŒæå°2ãæå€§10ïŒ
- RDS PostgreSQLïŒMulti-AZïŒ
- ElastiCache Redis
- S3 + CloudFront
ã»ãã¥ãªãã£ã°ã«ãŒããš
IAMããŒã«ãé©åã«èšå®ããŠãã ããã
åŠç¿ãã€ã³ã: IaCã®å®è·µ
ããã³ãã059: CI/CDãã€ãã©ã€ã³èšèš
以äžã®ãããžã§ã¯ãã®
GitLab CI/CDãã€ãã©ã€ã³ãèšèšããŠãã ããïŒ
ãããžã§ã¯ãæ§æïŒ
- ããã³ããšã³ãïŒReactïŒ
- ããã¯ãšã³ãïŒSpring BootïŒ
- ã€ã³ãã©ïŒTerraformïŒ
èŠä»¶ïŒ
- åäœãã¹ãå¿
é
- ãœããŒã¯ã©ãŠãçµ±å
- ã»ãã¥ãªãã£ã¹ãã£ã³
- èªåãããã€ïŒdev/stg/prodïŒ
- ããŒã«ããã¯æ©èœ
.gitlab-ci.ymlãäœæããŠãã ããã
åŠç¿ãã€ã³ã: DevOpså®è·µ
ããã³ãã060: ããŒã¿ç§»è¡æŠç¥
以äžã®ããŒã¿ç§»è¡èšç»ãç«ãŠãŠãã ããïŒ
ç§»è¡å
ïŒ
- Oracle 12c
- ããŒã¿é: 5TB
- ããŒãã«æ°: 500
- æ¥æ¬¡å¢å é: 10GB
ç§»è¡å
ïŒ
- PostgreSQL 14
- AWS RDS
å¶çŽïŒ
- ããŠã³ã¿ã€ã : æå€§4æé
- ããŒã¿æŽåæ§å¿
é
- ç§»è¡åŸã®åãæ»ãå¯èœ
è©³çŽ°ãªæé ãšãªã¹ã¯å¯Ÿçã
å«ããŠãã ããã
åŠç¿ãã€ã³ã: å€§èŠæš¡ããŒã¿ç§»è¡
ããã³ãã061: ãã€ã¯ããµãŒãã¹åå²
以äžã®ã¢ããªã·ãã¯ã·ã¹ãã ã
ãã€ã¯ããµãŒãã¹ã«åå²ããŠãã ããïŒ
çŸåšã®æ©èœïŒ
- ãŠãŒã¶ãŒç®¡ç
- åå管ç
- åšåº«ç®¡ç
- 泚æåŠç
- 決æžåŠç
- é
é管ç
- ã¬ããŒãçæ
ãã¡ã€ã³å¢çã®èå¥ã
ãµãŒãã¹ééä¿¡æ¹åŒã
ããŒã¿æŽåæ§ã®ç¢ºä¿æ¹æ³ã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: ãã¡ã€ã³é§åèšèš
ããã³ãã062: ç£èŠã»ã¢ã©ãŒãèšèš
以äžã®ã·ã¹ãã ã®ç£èŠèšèšãè¡ã£ãŠãã ããïŒ
察象ã·ã¹ãã ïŒ
- ãã€ã¯ããµãŒãã¹ïŒ10åïŒ
- Kubernetes ã¯ã©ã¹ã¿ãŒ
- RDS, ElastiCache
- å€éšAPI飿ºãã
èŠä»¶ïŒ
- SLO: 99.9%
- MTTR: 30å以å
- äºé²çæ€ç¥
Prometheus + Grafanaã§ã®
ã¡ããªã¯ã¹ãã¢ã©ãŒãã«ãŒã«ã
ããã·ã¥ããŒãèšèšã
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: å¯èŠ³æž¬æ§ã®å®è£
ããã³ãã063: ã»ãã¥ãªãã£ç£æ»
以äžã®ã³ãŒããšã€ã³ãã©æ§æã®
ã»ãã¥ãªãã£ç£æ»ã宿œããŠãã ããïŒ
[ã·ã¹ãã æ§æå³]
[ãµã³ãã«ã³ãŒã]
[ãããã¯ãŒã¯èšå®]
OWASP Top 10ã
CIS Benchmarksã
AWSã»ãã¥ãªãã£ãã¹ããã©ã¯ãã£ã¹
ã«åºã¥ããŠè©äŸ¡ãã
æ¹åææ¡ãåªå
床ä»ãã§
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: ã»ãã¥ãªãã£è©äŸ¡
ããã³ãã064: è² è·è©Šéšã·ããªãª
ECãµã€ãã®å¹Žæ«ã»ãŒã«ã«åãã
è² è·è©Šéšã·ããªãªãäœæããŠãã ããïŒ
æ³å®è² è·ïŒ
- éåžžæã®20åã¢ã¯ã»ã¹
- åæè³Œå
¥è
æ°: 5000人
- ååæ°: 10000SKU
JMeterãŸãã¯Gatlingã§ã®
ãã¹ãã¹ã¯ãªãããäœæãã
ç£èŠãã¹ãã¡ããªã¯ã¹ãš
å€å®åºæºãå®çŸ©ããŠãã ããã
åŠç¿ãã€ã³ã: æ§èœè©Šéšèšèš
ããã³ãã065: çœå®³åŸ©æ§èšç»
以äžã®ã·ã¹ãã ã®DRèšç»ã
çå®ããŠãã ããïŒ
ã·ã¹ãã ïŒ
- éèååŒã·ã¹ãã
- RTO: 1æé
- RPO: 5å
- 幎éå¯çšæ§: 99.99%
çŸåšæ§æïŒ
- æ±äº¬ãªãŒãžã§ã³åäžæ§æ
- æ¥æ¬¡ããã¯ã¢ãã
ã³ã¹ãå¹çãèæ
®ãã
DRæ§æãšåãæ¿ãæé ã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: äºæ¥ç¶ç¶èšç»
ããã³ãã066: ã³ã¹ãæé©ååæ
以äžã®AWSç°å¢ã®ã³ã¹ãæé©åæ¡ã
æç€ºããŠãã ããïŒ
çŸåšã®æé¡: $50,000
å
èš³ïŒ
- EC2: $20,000ïŒ50ã€ã³ã¹ã¿ã³ã¹ïŒ
- RDS: $10,000ïŒ10ã€ã³ã¹ã¿ã³ã¹ïŒ
- ããŒã¿è»¢é: $8,000
- S3: $5,000ïŒ50TBïŒ
- ãã®ä»: $7,000
å©çšç¶æ³ïŒ
- å¹³æ¥æ¥äžã®ã¿é«è² è·
- éçºç°å¢ã¯å€éæªäœ¿çš
- ãã°ä¿ææé: ç¡æé
20%ã®ã³ã¹ãåæžãç®æšã«
å
·äœçãªæœçãææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: ã¯ã©ãŠãã³ã¹ãæé©å
ããã³ãã067: API Gatewayèšèš
以äžã®èŠä»¶ã§API Gatewayèšèšã
è¡ã£ãŠãã ããïŒ
èŠä»¶ïŒ
- 10åã®ãã€ã¯ããµãŒãã¹çµ±å
- èªèšŒã»èªå¯ïŒOAuth2.0ïŒ
- ã¬ãŒãå¶éïŒãŠãŒã¶ãŒå¥ïŒ
- ãã£ãã·ã³ã°
- ãªã¯ãšã¹ã/ã¬ã¹ãã³ã¹å€æ
- API ããŒãžã§ãã³ã°
Kong ãŸã㯠AWS API Gatewayã§ã®
å®è£
æ¹æ³ã瀺ããŠãã ããã
åŠç¿ãã€ã³ã: API管çåºç€
ããã³ãã068: ãã°åæåºç€
以äžã®ãã°åæåºç€ãèšèšããŠãã ããïŒ
ãã°ãœãŒã¹ïŒ
- ã¢ããªã±ãŒã·ã§ã³ãã°ïŒ1TB/æ¥ïŒ
- ã¢ã¯ã»ã¹ãã°ïŒ500GB/æ¥ïŒ
- ã·ã¹ãã ãã°ïŒ100GB/æ¥ïŒ
- ç£æ»ãã°
èŠä»¶ïŒ
- ãªã¢ã«ã¿ã€ã åæ
- 30æ¥éã®æ€çŽ¢å¯èœ
- 1幎éã®ã¢ãŒã«ã€ã
- ã³ã³ãã©ã€ã¢ã³ã¹å¯Ÿå¿
ELKã¹ã¿ãã¯ãŸãã¯
AWSç°å¢ã§ã®æ§æã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: ãã°åºç€èšèš
ããã³ãã069: æ©æ¢°åŠç¿ãã€ãã©ã€ã³
以äžã®èŠä»¶ã§æ©æ¢°åŠç¿ãã€ãã©ã€ã³ã
èšèšããŠãã ããïŒ
ãŠãŒã¹ã±ãŒã¹ïŒ
- ååã¬ã³ã¡ã³ããŒã·ã§ã³
- æ¥æ¬¡ã§ååŠç¿
- ãªã¢ã«ã¿ã€ã æšè«
ããŒã¿ïŒ
- ãŠãŒã¶ãŒè¡åãã°ïŒ1åä»¶/æ¥ïŒ
- ååãã¹ã¿ïŒ100äžSKUïŒ
- 賌買履æŽ
MLOpsã®èгç¹ãå«ãã
ã¢ãŒããã¯ãã£ãš
å®è£
æ¹æ³ãææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: MLåºç€èšèš
ããã³ãã070: æè¡çè² åµã®è©äŸ¡
10幎éçšãããŠããã·ã¹ãã ã®
æè¡çè² åµãè©äŸ¡ããŠãã ããïŒ
çŸç¶ïŒ
- Java 8 + Struts 1.x
- Oracle 11g
- SVN管ç
- æåãããã€
- ãã¹ãã«ãã¬ããž: 20%
- ããã¥ã¡ã³ã: å€ã
è©äŸ¡åºæºãå®çŸ©ãã
åªå
é äœä»ããã
æ¹åããŒããããã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: ã¬ã¬ã·ãŒè©äŸ¡
ð ã¬ãã«71-85: äžçŽç·š - é«åºŠãªæŽ»çšææ³ {#ã¬ãã«71-85}
ããã³ãã071: ã¢ãŒããã¯ãã£æææ±ºå®èšé²
以äžã®ã¢ãŒããã¯ãã£æ±ºå®ã«ã€ããŠ
ADRïŒArchitecture Decision RecordïŒã
äœæããŠãã ããïŒ
ã³ã³ããã¹ãïŒ
å€§èŠæš¡ECãµã€ãã®ããŒã¿ããŒã¹éžå®
éžæè¢ïŒ
1. PostgreSQL
2. MongoDB
3. DynamoDB
4. CockroachDB
è©äŸ¡è»žïŒ
- ã¹ã±ãŒã©ããªãã£
- äžè²«æ§ä¿èšŒ
- éçšã³ã¹ã
- åŠç¿ã³ã¹ã
- ãšã³ã·ã¹ãã
決å®ãšãã®æ ¹æ ã
æ§é åããŠææžåããŠãã ããã
åŠç¿ãã€ã³ã: æææ±ºå®ã®ææžå
ããã³ãã072: Event Stormingãã¡ã·ãªããŒã·ã§ã³
以äžã®ããžãã¹ãã¡ã€ã³ã§
Event Stormingã»ãã·ã§ã³ã
ã·ãã¥ã¬ãŒãããŠãã ããïŒ
ãã¡ã€ã³: ãªã³ã©ã€ã³ä¿éºç³èŸŒã·ã¹ãã
ã¹ããŒã¯ãã«ããŒïŒ
- 顧客
- ä¿éºã¢ããã€ã¶ãŒ
- ã¢ã³ããŒã©ã€ã¿ãŒ
- ã·ã¹ãã 管çè
以äžãèå¥ããŠãã ããïŒ
1. ãã¡ã€ã³ã€ãã³ã
2. ã³ãã³ã
3. ã¢ã°ãªã²ãŒã
4. å¢çã¥ããããã³ã³ããã¹ã
5. ããªã·ãŒ
çµæãMiroããŒã颚ã«
èŠèŠåããŠãã ããã
åŠç¿ãã€ã³ã: DDDå®è·µææ³
ããã³ãã073: ã«ãªã¹ãšã³ãžãã¢ãªã³ã°èšç»
以äžã®ã·ã¹ãã ã«å¯Ÿãã
ã«ãªã¹ãšã³ãžãã¢ãªã³ã°å®éšèšç»ã
äœæããŠãã ããïŒ
ã·ã¹ãã æ§æïŒ
- KubernetesïŒ3ããŒãïŒ
- ãã€ã¯ããµãŒãã¹ïŒ15åïŒ
- Istio ãµãŒãã¹ã¡ãã·ã¥
- PostgreSQLïŒã¬ããªã±ãŒã·ã§ã³ïŒ
- Redis ã¯ã©ã¹ã¿
å®éšã·ããªãªïŒ
1. å®åžžç¶æ
ã®å®çŸ©
2. 仮説èšå®
3. å®éšèšèš
4. 圱é¿ç¯å²ã®æå°å
5. å®è¡ãšèгå¯
6. åŠç¿ãšæ¹å
åãã§ãŒãºã®è©³çްã
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: ã¬ãžãªãšã³ã¹æ€èšŒ
ããã³ãã074: GraphQL APIèšèš
以äžã®èŠä»¶ã§GraphQL APIã
èšèšããŠãã ããïŒ
ãã¡ã€ã³: ãœãŒã·ã£ã«ã¡ãã£ã¢ãã©ãããã©ãŒã
ãšã³ãã£ãã£ïŒ
- User
- Post
- Comment
- Like
- Follow
èŠä»¶ïŒ
- ãªã¢ã«ã¿ã€ã æŽæ°ïŒSubscriptionïŒ
- ããŒãžããŒã·ã§ã³
- èªèšŒã»èªå¯
- N+1åé¡ã®åé¿
- ã¬ãŒãå¶é
ã¹ããŒãå®çŸ©ãš
å®è£
äžã®æ³šæç¹ã
å«ããŠãã ããã
åŠç¿ãã€ã³ã: ã¢ãã³APIèšèš
ããã³ãã075: 忣ãã©ã³ã¶ã¯ã·ã§ã³èšèš
以äžã®ã·ããªãªã§åæ£ãã©ã³ã¶ã¯ã·ã§ã³ã
èšèšããŠãã ããïŒ
ã·ããªãª: ECãµã€ãã®æ³šæåŠç
é¢é£ãµãŒãã¹ïŒ
- 泚æãµãŒãã¹
- åšåº«ãµãŒãã¹
- 決æžãµãŒãã¹
- é
éãµãŒãã¹
- éç¥ãµãŒãã¹
èŠä»¶ïŒ
- æçµçäžè²«æ§ã§å¯
- è£åãã©ã³ã¶ã¯ã·ã§ã³å¿
é
- ç£æ»èšŒè·¡
Sagaãã¿ãŒã³ã§ã®å®è£
ã
詳现ã«èšèšããŠãã ããã
åŠç¿ãã€ã³ã: 忣ã·ã¹ãã èšèš
ããã³ãã076: ãŒããã©ã¹ãã»ãã¥ãªãã£
以äžã®äŒæ¥ã·ã¹ãã ã«
ãŒããã©ã¹ãã»ãã¥ãªãã£ã¢ãã«ã
å°å
¥ããèšç»ãäœæããŠãã ããïŒ
çŸç¶ïŒ
- VPNçµç±ã®ç€Ÿå
ã¢ã¯ã»ã¹
- ãã¡ã€ã¢ãŠã©ãŒã«å¢çé²åŸ¡
- ADèªèšŒ
ç®æšæ§æïŒ
- ããã€ã¹èªèšŒ
- ç¶ç¶çæ€èšŒ
- æå°æš©éã¢ã¯ã»ã¹
- æå·åéä¿¡
ç§»è¡ããŒãããããš
å¿
èŠãªã³ã³ããŒãã³ãã
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: ææ°ã»ãã¥ãªãã£ã¢ãã«
ããã³ãã077: SREãã©ã¯ãã£ã¹å°å ¥
åŸæ¥ã®éçšããŒã ãSREããŒã ã«
転æããèšç»ãäœæããŠãã ããïŒ
çŸç¶ïŒ
- æåãªãã¬ãŒã·ã§ã³äžå¿
- é害察å¿ã¯éœåºŠå¯Ÿå¿
- 倿Žäœæ¥ã¯èšç»åæ¢
ç®æšïŒ
- SLI/SLOé§å
- ãšã©ãŒããžã§ãã管ç
- ãã€ã«ã®åæž
- èªååæšé²
çµç¹å€é©ãšæè¡å°å
¥ã®
äž¡é¢ããèšç»ããŠãã ããã
åŠç¿ãã€ã³ã: SREæåå°å ¥
ããã³ãã078: ãšããžã³ã³ãã¥ãŒãã£ã³ã°èšèš
以äžã®IoTã·ã¹ãã ã«
ãšããžã³ã³ãã¥ãŒãã£ã³ã°ã
å°å
¥ããŠãã ããïŒ
èŠä»¶ïŒ
- ã»ã³ãµãŒæ°: 10,000å°
- ããŒã¿éä¿¡éé: 1ç§
- ãªã¢ã«ã¿ã€ã ç°åžžæ€ç¥
- 垯åå¹
å¶é: 1Mbps/æ ç¹
- æ ç¹æ°: 100
ã¢ãŒããã¯ãã£ïŒ
- ãšããžã§ã®åŠçå
容
- ã¯ã©ãŠããšã®é£æº
- ããŒã¿åææŠç¥
- æ©æ¢°åŠç¿ã¢ãã«é
åž
詳现èšèšãæç€ºããŠãã ããã
åŠç¿ãã€ã³ã: ãšããž/ã¯ã©ãŠã飿º
ããã³ãã079: ãããã¯ãã§ãŒã³æŽ»çš
以äžã®ãŠãŒã¹ã±ãŒã¹ã«
ãããã¯ãã§ãŒã³æè¡ã
é©çšããèšèšãè¡ã£ãŠãã ããïŒ
ãŠãŒã¹ã±ãŒã¹: ãµãã©ã€ãã§ãŒã³è¿œè·¡
èŠä»¶ïŒ
- 補é ããæ¶è²»è
ãŸã§è¿œè·¡
- æ¹ãã鲿¢
- ãã©ã€ãã·ãŒä¿è·
- æ¢åã·ã¹ãã 飿º
以äžãå«ããŠãã ããïŒ
- ãããã¯ãã§ãŒã³åºç€éžå®
- ã¹ããŒãã³ã³ãã©ã¯ãèšèš
- ãªããã§ãŒã³ããŒã¿æŠç¥
- ããã©ãŒãã³ã¹èæ
®
åŠç¿ãã€ã³ã: 忣å°åž³æè¡
ããã³ãã080: éåã³ã³ãã¥ãŒãã£ã³ã°å¯Ÿå¿
çŸåšã®æå·åã·ã¹ãã ã
éåã³ã³ãã¥ãŒãã£ã³ã°æä»£ã«
察å¿ãããç§»è¡èšç»ã
äœæããŠãã ããïŒ
çŸç¶ïŒ
- RSA-2048
- AES-256
- SHA-256
察å¿é
ç®ïŒ
- èéåæå·ãžã®ç§»è¡
- ãã€ããªããæå·å
- éµç®¡çã·ã¹ãã æŽæ°
- åŸæ¹äºææ§ç¶æ
5幎éã®ç§»è¡ããŒããããã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: å°æ¥æè¡ãžã®å¯Ÿå¿
ããã³ãã081: AIãªãã¬ãŒã·ã§ã³åºç€
以äžã®èŠä»¶ã§AIOpsåºç€ã
èšèšããŠãã ããïŒ
ç£èŠå¯Ÿè±¡ïŒ
- 1000å°ã®ãµãŒããŒ
- 50åã®ã¢ããªã±ãŒã·ã§ã³
- 10çš®é¡ã®ããã«ãŠã§ã¢
æ©èœèŠä»¶ïŒ
- ç°åžžæ€ç¥ïŒæåž«ãªãåŠç¿ïŒ
- æ ¹æ¬åå åæ
- äºæž¬çã¹ã±ãŒãªã³ã°
- èªå修埩
ã¢ãŒããã¯ãã£ãš
å®è£
ã¢ãããŒãã
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: AIé§åéçš
ããã³ãã082: ãã«ãã¯ã©ãŠãæŠç¥
以äžã®èŠä»¶ã§ãã«ãã¯ã©ãŠã
ã¢ãŒããã¯ãã£ãèšèšããŠãã ããïŒ
èŠä»¶ïŒ
- ãã³ããŒããã¯ã€ã³åé¿
- å°ççåé·æ§
- ã³ã¹ãæé©å
- ã³ã³ãã©ã€ã¢ã³ã¹å¯Ÿå¿
å©çšã¯ã©ãŠãïŒ
- AWSïŒã¡ã€ã³ïŒ
- AzureïŒDRïŒ
- GCPïŒAI/MLïŒ
çµ±åç®¡çæ¹æ³ãš
ã¯ãŒã¯ããŒãé
眮æŠç¥ã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: ã¯ã©ãŠãæŠç¥
ããã³ãã083: æè¡ãã¥ãŒããªãžã§ã³ã¹
M&Aå¯Ÿè±¡äŒæ¥ã®ã·ã¹ãã ã®
æè¡ãã¥ãŒããªãžã§ã³ã¹ã
宿œããŠãã ããïŒ
è©äŸ¡é
ç®ïŒ
- ã¢ãŒããã¯ãã£
- ã³ãŒãå質
- æè¡çè² åµ
- ã»ãã¥ãªãã£
- ã¹ã±ãŒã©ããªãã£
- ããŒã èœå
- ã©ã€ã»ã³ã¹
ãã§ãã¯ãªã¹ããš
è©äŸ¡ã¬ããŒããã³ãã¬ãŒãã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: æè¡è©äŸ¡ææ³
ããã³ãã084: ã°ãªãŒã³ITæŠç¥
ããŒã¿ã»ã³ã¿ãŒã®
ã«ãŒãã³ãã¥ãŒãã©ã«åèšç»ã
äœæããŠãã ããïŒ
çŸç¶ïŒ
- 1000å°ã®ãµãŒããŒ
- PUE: 2.0
- 幎éé»å: 10GWh
ç®æšïŒ
- 2030幎ãŸã§ã«ããããŒã
- PUE: 1.2以äž
以äžãå«ãèšç»ïŒ
- çé»åå
- åçå¯èœãšãã«ã®ãŒ
- å·åŽå¹çå
- ã¯ãŒã¯ããŒãæé©å
åŠç¿ãã€ã³ã: æç¶å¯èœæ§
ããã³ãã085: ãã«ã¹ã¿ãã¯æé©å
以äžã®Webã¢ããªã±ãŒã·ã§ã³ã®
ãšã³ãããŒãšã³ãæé©åã
è¡ã£ãŠãã ããïŒ
çŸç¶ããã©ãŒãã³ã¹ïŒ
- TTFB: 3ç§
- FCP: 5ç§
- TTI: 8ç§
- ãã³ãã«ãµã€ãº: 5MB
ã¹ã¿ãã¯ïŒ
- Next.js
- GraphQL
- PostgreSQL
- Redis
- nginx
ç®æšïŒ
- Core Web Vitalséæ
- 50%ã®é«éå
åã¬ã€ã€ãŒã§ã®
æé©åæ¡ãæç€ºããŠãã ããã
åŠç¿ãã€ã³ã: çµ±åæé©å
ð ã¬ãã«86-100: è¶ äžçŽç·š - ãšãã¹ããŒãã¬ãã« {#ã¬ãã«86-100}
ããã³ãã086: ãšã³ã¿ãŒãã©ã€ãºå€é©
ã¬ã¬ã·ãŒéèæ©é¢ã®
ããžã¿ã«ãã©ã³ã¹ãã©ãŒã¡ãŒã·ã§ã³
5ã«å¹Žèšç»ãçå®ããŠãã ããïŒ
çŸç¶ïŒ
- COBOLåºå¹¹ã·ã¹ãã ïŒ40幎ïŒ
- 2000人ã®ITéšé
- ãŠã©ãŒã¿ãŒãã©ãŒã«éçº
- ããŒã¿ã»ã³ã¿ãŒ3æ ç¹
- 幎éITäºç®: 500åå
ããžã§ã³ïŒ
- ã¯ã©ãŠããã€ãã£ã
- APIãšã³ãããŒ
- ã¢ãžã£ã€ã«çµç¹
- ããŒã¿ããªãã³çµå¶
çµç¹ãæè¡ãæåã®
å€é©ããŒããããã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: å€§èŠæš¡å€é©ç®¡ç
ããã³ãã087: 次äžä»£ã¢ãŒããã¯ãã£
2030幎ãèŠæ®ãã
次äžä»£ã·ã¹ãã ã¢ãŒããã¯ãã£ã
èšèšããŠãã ããïŒ
èæ
®æè¡ïŒ
- éåã³ã³ãã¥ãŒãã£ã³ã°
- 6Gãããã¯ãŒã¯
- è³åã³ã³ãã¥ãŒãã£ã³ã°
- èªåŸåAI
- æ¡åŒµçŸå®
ãŠãŒã¹ã±ãŒã¹ïŒ
- ã¹ããŒãã·ãã£åºç€
èŠä»¶ãã¢ãŒããã¯ãã£ã
å®çŸã«åããæè¡èª²é¡ã
æŽçããŠãã ããã
åŠç¿ãã€ã³ã: æªæ¥æè¡èšèš
ããã³ãã088: ã°ããŒãã«ã·ã¹ãã èšèš
äžç200ã«åœã§å©çšããã
éèæ±ºæžã·ã¹ãã ãèšèšããŠãã ããïŒ
èŠä»¶ïŒ
- ååœèŠå¶å¯Ÿå¿
- 24æé365æ¥çšŒå
- 100åãã©ã³ã¶ã¯ã·ã§ã³/æ¥
- ã¬ã€ãã³ã·: <100ms
- å¯çšæ§: 99.999%
èæ
®äºé
ïŒ
- ããŒã¿ã¬ãžãã³ã·ãŒ
- å€é貚察å¿
- ã¿ã€ã ãŸãŒã³
- èšèª/æå
詳现ã¢ãŒããã¯ãã£ã
æç€ºããŠãã ããã
åŠç¿ãã€ã³ã: è¶ å€§èŠæš¡èšèš
ããã³ãã089: AIã¬ããã³ã¹äœç³»
äŒæ¥ã®AIã¬ããã³ã¹äœç³»ã
æ§ç¯ããŠãã ããïŒ
察象ïŒ
- 1000åã®AIã¢ãã«éçš
- æ©å¯ããŒã¿å©çš
- æææ±ºå®æ¯æŽAI
ãã¬ãŒã ã¯ãŒã¯ïŒ
- å«çåå
- ãªã¹ã¯ç®¡ç
- å質ä¿èšŒ
- 説æå¯èœæ§
- ãã€ã¢ã¹å¯Ÿç
- ãã©ã€ãã·ãŒä¿è·
ããªã·ãŒãããã»ã¹ã
æè¡çå®è£
ãå«ããŠãã ããã
åŠç¿ãã€ã³ã: AIçµ±å¶
ããã³ãã090: ãã€ããŒã¹ã±ãŒã«èšèš
以äžã®èŠä»¶ã§ãã€ããŒã¹ã±ãŒã«
ãã©ãããã©ãŒã ãèšèšããŠãã ããïŒ
èŠä»¶ïŒ
- 10åãŠãŒã¶ãŒå¯Ÿå¿
- 1EBçŽããŒã¿
- æ¯ç§100äžãªã¯ãšã¹ã
- 5倧éžå±é
- å€èšèª/å€é貚
NetflixãFacebookçŽã®
ã¹ã±ãŒã«ãæ³å®ãã
ã¢ãŒããã¯ãã£ã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: 極éã¹ã±ãŒã«
ããã³ãã091: è€éç³»ã·ã¹ãã åæ
çžäºäŸåãã50åã®ãã€ã¯ããµãŒãã¹ã®
ã·ã¹ãã å
šäœã®æ¯ãèãã
åæããŠãã ããïŒ
課é¡ïŒ
- ã«ã¹ã±ãŒãé害
- æ§èœå£åã®äŒæ
- äžè²«æ§ã®ä¿èšŒ
- ãããã°å°é£æ§
以äžãæç€ºããŠãã ããïŒ
- äŸåé¢ä¿ã®å¯èŠå
- éå®³äŒæã¢ãã«
- å埩åã®å®éå
- æ¹åã¢ãŒããã¯ãã£
åŠç¿ãã€ã³ã: è€éç³»çè§£
ããã³ãã092: äºæ¥ã€ã³ãã¯ãæå€§å
æè¡æè³ã®äºæ¥ã€ã³ãã¯ãã
æå€§åããæŠç¥ãç«æ¡ããŠãã ããïŒ
äºç®: 100åå/幎
æé: 3幎
è©äŸ¡è»žïŒ
- 売äžè²¢ç®
- ã³ã¹ãåæž
- ãªã¹ã¯äœæž
- ç«¶äºåªäœæ§
- ã€ãããŒã·ã§ã³
ããŒããã©ãªãªæŠç¥ãš
ROIæž¬å®æ¹æ³ã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: æè¡çµå¶
ããã³ãã093: ç£æ¥DXèšèš
è£œé æ¥ã®å·¥å Žå
šäœã®
DXã°ã©ã³ããã¶ã€ã³ã
äœæããŠãã ããïŒ
察象ïŒ
- 10å·¥å Ž
- 10000å°ã®èšå
- 50000人ã®äœæ¥å¡
å®çŸæ©èœïŒ
- äºç¥ä¿å
š
- èªåå質管ç
- ãµãã©ã€ãã§ãŒã³æé©å
- ã«ãŒãã³ç®¡ç
- äœæ¥å¡ã¹ãã«ç®¡ç
IT/OTçµ±åã¢ãŒããã¯ãã£ã
èšèšããŠãã ããã
åŠç¿ãã€ã³ã: ç£æ¥IoT
ããã³ãã094: 屿©ç®¡çã·ãã¥ã¬ãŒã·ã§ã³
以äžã®ã·ããªãªã§ã®
屿©ç®¡ç察å¿ã
ã·ãã¥ã¬ãŒãããŠãã ããïŒ
ã·ããªãªïŒ
å€§èŠæš¡ãµã€ããŒæ»æã«ãã
- 顧客ããŒã¿1000äžä»¶æµåºçã
- åºå¹¹ã·ã¹ãã 忢
- ã©ã³ãµã ãŠã§ã¢ææ
ã¿ã€ã ã©ã€ã³ã§ïŒ
- åå察å¿
- 調æ»åæ
- 埩æ§èšç»
- 察å€å¯Ÿå¿
- åçºé²æ¢
ã詳现åããŠãã ããã
åŠç¿ãã€ã³ã: 屿©ç®¡ç
ããã³ãã095: ãã¯ãããžãŒèå
以äžã®æè¡ãèåãã
驿°çãªã·ã¹ãã ãèšèšããŠãã ããïŒ
æè¡èŠçŽ ïŒ
- ãããã¯ãã§ãŒã³
- AI/æ©æ¢°åŠç¿
- IoT
- 5G
- AR/VR
- éåæè¡
ãŠãŒã¹ã±ãŒã¹ïŒ
次äžä»£å»çã·ã¹ãã
å®çŸå¯èœæ§ãš
段éçå®è£
èšç»ã
å«ããŠãã ããã
åŠç¿ãã€ã³ã: æè¡èå
ããã³ãã096: ã¢ãŒããã¯ãè²æ
ãšã³ã¿ãŒãã©ã€ãºã¢ãŒããã¯ã
è²æããã°ã©ã ãèšèšããŠãã ããïŒ
察象: äžçŽãšã³ãžãã¢
æé: 2幎
ç®æš: äžçã¬ãã«ã®ã¢ãŒããã¯ã
ã«ãªãã¥ã©ã ïŒ
- æè¡ã¹ãã«
- ããžãã¹ã¹ãã«
- ã³ãã¥ãã±ãŒã·ã§ã³
- æèæ³
- å®è·µãããžã§ã¯ã
詳现ããã°ã©ã ã
äœæããŠãã ããã
åŠç¿ãã€ã³ã: 人æè²æ
ããã³ãã097: æè¡åµåè§£æ¶æŠç¥
æè¡çè² åµ1000ååçžåœã®
è§£æ¶æŠç¥ãç«æ¡ããŠãã ããïŒ
è² åµå
èš³ïŒ
- ã¬ã¬ã·ãŒã³ãŒã: 40%
- å€ãã€ã³ãã©: 30%
- äžé©åãªèšèš: 20%
- ããã¥ã¡ã³ãäžè¶³: 10%
å¶çŽïŒ
- 幎éäºç®: 50åå
- ããžãã¹ç¶ç¶å¿
é
- 人å¡å¢å äžå¯
5幎èšç»ãäœæããŠãã ããã
åŠç¿ãã€ã³ã: è² åµç®¡ç
ããã³ãã098: ã€ãããŒã·ã§ã³åµåº
æè¡é§åã€ãããŒã·ã§ã³åµåºã®
ä»çµã¿ãèšèšããŠãã ããïŒ
ç®æšïŒ
- 幎é10åã®æ°èŠäºæ¥åµåº
- 5幎ã§1000ååèŠæš¡äºæ¥
èŠçŽ ïŒ
- ã¢ã€ãã¢åµåº
- PoC宿œ
- äºæ¥å倿
- ã¹ã±ãŒã«æŠç¥
- 倱æèš±å®¹æå
çµç¹ãšããã»ã¹ã
èšèšããŠãã ããã
åŠç¿ãã€ã³ã: ã€ãããŒã·ã§ã³ç®¡ç
ããã³ãã099: ç©¶æ¥µã®æé©å
以äžã®ã·ã¹ãã ã
çè«éçãŸã§æé©åããŠãã ããïŒ
察象: ãªã¢ã«ã¿ã€ã ååŒã·ã¹ãã
çŸç¶ïŒ
- ã¬ã€ãã³ã·: 10ms
- ã¹ã«ãŒããã: 10äž/ç§
- å¯çšæ§: 99.99%
ç®æšïŒ
- ã¬ã€ãã³ã·: <1ms
- ã¹ã«ãŒããã: 100äž/ç§
- å¯çšæ§: 99.999%
ããŒããŠã§ã¢ãOSã
ãããã¯ãŒã¯ãã¢ããªã±ãŒã·ã§ã³
å
šã¬ã€ã€ãŒã§ã®æé©åã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: 極éæé©å
ããã³ãã100: æªæ¥äºæž¬ãšå¯Ÿå¿
ä»åŸ10幎éã®ITæ¥çã®å€åãäºæž¬ãã
ITã³ã³ãµã«ã¿ã³ããšããŠ
æºåãã¹ãããšãææ¡ããŠãã ããïŒ
èæ
®èŠçŽ ïŒ
- æè¡ãã¬ã³ã
- ããžãã¹ã¢ãã«å€å
- èŠå¶åå
- 瀟äŒå€å
- å°æ¿åŠãªã¹ã¯
å人ãšããŠãçµç¹ãšããŠ
åãã¹ãã¢ã¯ã·ã§ã³ã
ããŒããããåããŠãã ããã
æåŸã«ããã®ããŒããããã
å®äºããåŸã®æ¬¡ã®ã¹ãããã
ææ¡ããŠãã ããã
åŠç¿ãã€ã³ã: æªæ¥æŽå¯
ð ä»é²: ãã©ãã«ã·ã¥ãŒãã£ã³ã°é {#ä»é²}
ããããåé¡ãšå¯ŸåŠæ³
1. AIãæåŸ éãã®åçãããªã
å¯ŸåŠæ³ããã³ããïŒ
ããªãã®åçã¯ç§ã®æåŸ
ãšç°ãªããŸããã
ç§ãæ¬åœã«ç¥ãããã£ãã®ã¯[å
·äœçãªå
容]ã§ãã
ããäžåºŠã以äžã®èгç¹ã§åçããŠãã ããïŒ
1. [芳ç¹1]
2. [芳ç¹2]
3. [芳ç¹3]
2. åçãæœè±¡çããã
å¯ŸåŠæ³ããã³ããïŒ
ãã£ãšå
·äœçãªäŸã䜿ã£ãŠèª¬æããŠãã ããã
å®éã®ã³ãŒããã³ãã³ãã
èšå®ãã¡ã€ã«ã®äŸãå«ããŠãã ããã
3. åçãé·ããã/çããã
å¯ŸåŠæ³ããã³ããïŒ
åçã[100æå/500æå/1000æå]çšåºŠã«
調æŽããŠãããäžåºŠçããŠãã ããã
éèŠãªãã€ã³ããåªå
ããŠãã ããã
4. å°éçšèªãå€ããã
å¯ŸåŠæ³ããã³ããïŒ
å°éçšèªã䜿ããã«ã
æ°äººãšã³ãžãã¢ã§ãçè§£ã§ããããã«
説æãçŽããŠãã ããã
å¿
èŠãªå°éçšèªã¯éœåºŠè§£èª¬ããŠãã ããã
5. å®è£ æ¹æ³ãããããªã
å¯ŸåŠæ³ããã³ããïŒ
ãã®æŠå¿µãå®éã«å®è£
ããæ¹æ³ã
ã¹ããããã€ã¹ãããã§æããŠãã ããã
ç°å¢æ§ç¯ããå§ããŠã
åäœç¢ºèªãŸã§å«ããŠãã ããã
ã¡ã¿ããã³ããé
æ¹åèŠæ±
ãã®åçãããã«æ¹åããã«ã¯
ã©ã®ãããªè³ªåãããã°ããã§ããïŒ
5ã€ææ¡ããŠãã ããã
ç解床確èª
ä»ã®èª¬æã§ç§ãçè§£ãã¹ã
æãéèŠãª3ã€ã®ãã€ã³ãã¯äœã§ããïŒ
å¿çšå±é
ãã®ç¥èãå®åã§æŽ»çšãã
å
·äœçãªã·ããªãªã3ã€
瀺ããŠãã ããã
åŠç¿å¹æãæå€§åããã³ã
- å¿ ãå®è¡ãã - èªãã ãã§ãªãå®éã«è©Šã
- çµæãåæãã - ãªããã®åçã«ãªã£ããèãã
- æ¹å€ããŠåå®è¡ - ããã³ãããä¿®æ£ããŠéãã芳å¯
- å®åã«é©çš - åŠãã ææ³ãå³åº§ã«æ¥åã§äœ¿çš
- ããŒã ã§å ±æ - è¯ãããã³ããã¯çµç¹ã®è³ç£
ð å®èµ°ããã§ãšãããããŸãïŒ
ãã®ããŒãããããå®äºããããªãã¯ã
çæAIã䜿ãããªããšãã¹ããŒãã§ãã
次ã®ã¹ããã
- å°éç¹å - èªåã®å°éåéã«ç¹åããããã³ããéäœæ
- èªååæšé² - APIã䜿ã£ãæ¥åèªåå
- ããŒã å±é - çµç¹å šäœã®AIæŽ»çšæšé²
- ææ°åå - æ°ããAIæè¡ãžã®ç¶ç¶çé©å¿
- è²¢ç® - ã³ãã¥ããã£ãžã®ç¥èŠå ±æ
æåŸã«
çæAIã¯éå
·ã§ãã
ãã®ç䟡ã¯äœ¿ãææ¬¡ç¬¬ã§æ±ºãŸããŸãã
ãã®ããŒããããã§åŸãåãã
ããè¯ãæªæ¥ã®åµé ã«
掻ãããŠãã ããã
ãããAIãšå
±ã«æ©ãæ°ããæä»£ã®
ITãããã§ãã·ã§ãã«ãšããŠ
矜ã°ãããŸãããïŒ
English version
ð AI Utilization Skills 0â100 Roadmap
This content was automatically generated by Claude 4.0.
ð Table of Contents
- Introduction - How to Use This Roadmap
- Level 0-10: Ultra Beginner - Basics of AI Conversation
- Level 11-25: Beginner - Basic Prompting Techniques
- Level 26-40: Beginner-Intermediate - First Steps in Business Use
- Level 41-55: Intermediate - Prompt Engineering
- Level 56-70: Intermediate-Advanced - Application to Specialized Business
- Level 71-85: Advanced - Advanced Utilization Techniques
- Level 86-100: Ultra Advanced - Expert Level
- Appendix: Troubleshooting Collection
ð¯ Introduction - How to Use This Roadmap
Basic Rules
- Implement in order - Please implement each prompt in sequence
- Copy & Execute - Copy and execute the prompt examples as they are
- Observe results - Always read and understand the AI's response
- Improve and re-execute - Modify and re-execute to get better results
- Ask the AI if you don't understand - If there are parts you don't understand, ask the AI "What does this mean?"
ð¡ Most Important Technique: Meta-Prompting
Use this prompt when you're stuck!
I am [your position/job description].
I want to achieve [what you want to accomplish],
what kind of prompts should I write?
Please provide 3 specific examples.
ð± Level 0-10: Ultra Beginner - Basics of AI Conversation {#level0-10}
Prompt 001: First Step
Hello. I am an IT consultant.
What can you do?
Learning Point: Understanding the basic capabilities of AI
Prompt 002: Simple Question
What is Java?
Please explain in a way that beginners can understand.
Learning Point: How to specify the level of explanation
Prompt 003: Basics of Role Setting
You are an excellent IT consultant.
Please explain "DX promotion"
to a client in an easy-to-understand way.
Learning Point: The effect of giving AI a role
Prompt 004: Specific Instructions
Please summarize the following content in bullet points with 5 items:
Characteristics of core business systems
Learning Point: How to specify output format
Prompt 005: Request for Staged Explanation
About databases:
1. Explain in one sentence
2. Explain in 3 lines
3. Explain in detail for beginners
Learning Point: Obtaining information in stages
Prompt 006: Request for Comparison
Please compare on-premises and cloud
in a table format.
Learning Point: Specifying table format output
Prompt 007: Request for Examples
Please show 3 examples of API usage
including actual code.
Learning Point: How to request specific examples
Prompt 008: Consulting on Error Resolution
I got the following error. Please tell me the cause and solution:
[Paste error message here]
Learning Point: Requesting troubleshooting help
Prompt 009: Request for Summary
Please summarize the following text in 3 lines:
[Paste long text here]
Learning Point: Utilizing summarization capability
Prompt 010: Continuous Dialogue
Regarding your previous explanation,
please tell me more details.
I'm particularly interested in [specific part].
Learning Point: Leveraging context in continuous dialogue
ð Level 11-25: Beginner - Basic Prompting Techniques {#level11-25}
Prompt 011: Setting Constraints
Within 300 characters,
explain the V-model of system development.
Please don't use technical terms.
Learning Point: Combining multiple constraints
Prompt 012: Persona Setting
You are a core system architect
with 20 years of experience.
Please teach the basics of database design
to a new engineer.
Learning Point: Detailed persona setting
Prompt 013: Step by Step
Please teach me the basic usage of Git
step by step.
Include command examples for each step.
Learning Point: Requesting staged explanations
Prompt 014: Explicit Prerequisites
Prerequisites:
- Using Java Spring Boot
- PostgreSQL database
- RESTful API
Please design the structure of a simple CRUD application
under the above conditions.
Learning Point: Clarifying prerequisites
Prompt 015: Output Format Specification
Please create a template for a system requirements definition document
in the following format:
1. Overview
1.1 Purpose
1.2 Scope
2. Functional Requirements
2.1 [Function Name]
- Description:
- Input:
- Output:
- Process:
Learning Point: Specifying detailed output format
Prompt 016: Learning through Examples
Please explain SQL JOINs
in the following format:
1. Explanation of the concept
2. Syntax
3. Specific examples using actual tables
4. Common mistakes
5. Best practices
Learning Point: Requesting structured explanations
Prompt 017: Promoting Critical Thinking
Please list the advantages and disadvantages
of microservice architecture,
and explain when it should be adopted
and when it should not be adopted.
Learning Point: Balanced analysis
Prompt 018: Basic Code Generation
Please create a Java class with the following requirements:
- Class name: Employee
- Fields: id(int), name(String), salary(double)
- getter/setter methods
- toString method
Learning Point: Basic code generation
Prompt 019: Document Creation
Please create documentation for
the following API endpoint:
POST /api/users
- Request body: { "name": "string", "email": "string" }
- Response: { "id": "number", "name": "string", "email": "string" }
Learning Point: Creating API documentation
Prompt 020: Checklist Generation
Please create a checklist for
pre-production deployment.
Include security, performance,
and backup considerations.
Learning Point: Creating comprehensive checklists
Prompt 021: Troubleshooting Guide
Please create a troubleshooting procedure
for "database connection errors"
in a flowchart format.
Learning Point: Structuring problem-solving processes
Prompt 022: Best Practices
Please list 5 best practices for exception handling in Java,
and show bad examples and good examples of code
for each.
Learning Point: Learning through examples
Prompt 023: Request for Review
Please review the following code and
point out areas for improvement:
[Paste code here]
Please review from the following perspectives:
- Readability
- Performance
- Security
Learning Point: Utilizing code reviews
Prompt 024: Test Case Generation
Please create unit test cases with JUnit
for the following method:
public int divide(int a, int b) {
return a / b;
}
Include normal cases, error cases, and boundary values.
Learning Point: Automating test design
Prompt 025: Refactoring Proposal
Please refactor the following code:
[Paste complex code here]
Improve it according to SOLID principles,
and explain why these improvements are necessary.
Learning Point: Improvements based on design principles
ð§ Level 26-40: Beginner-Intermediate - First Steps in Business Use {#level26-40}
Prompt 026: Meeting Minutes Creation
Please create formal meeting minutes from the following notes:
Date: 2024/12/20 14:00-15:00
Participants: Yamada, Tanaka, Suzuki
Agenda: Requirements definition for new system
- Yamada: Explained issues with current system
- Tanaka: Budget is up to 30 million yen
- Suzuki: Completion needed by end of March
Decision: Create requirements document draft by next week
Learning Point: Structuring unstructured information
Prompt 027: Email Draft Creation
Please create an email to a client in the following situation:
- Situation: Project delayed by 1 week
- Cause: External API specification change
- Countermeasure: Plan to reduce delay to 3 days by adding resources
- Tone: Apologetic but positive
Learning Point: Creating business emails
Prompt 028: Technology Selection Support
Please suggest the optimal technology stack for the following requirements:
- Web application
- Maximum concurrent users: 1000
- Data volume: About 100GB
- Budget: Limited
- Development period: 6 months
- Team skills: Many have Java experience
Please include reasons for selection.
Learning Point: Multi-faceted technology selection
Prompt 029: Project Planning
Please create a WBS for the following project:
Project: EC site renewal
Period: 6 months
Main functions:
- Product management
- Order management
- Customer management
- Payment integration
Please include estimated workload for each task.
Learning Point: Structuring project plans
Prompt 030: SQL Optimization
Please optimize the following SQL query:
SELECT * FROM orders o
WHERE o.customer_id IN (
SELECT c.id FROM customers c
WHERE c.created_at > '2024-01-01'
)
AND o.status = 'completed'
Please also explain the improvement points for the execution plan.
Learning Point: Performance tuning
Prompt 031: Architecture Diagram Creation
Please create an architecture diagram in PlantUML code
for the following system:
- Frontend: React
- API: Spring Boot
- Database: PostgreSQL
- Cache: Redis
- Message Queue: RabbitMQ
Learning Point: Coding diagrams
Prompt 032: Security Assessment
Please identify security vulnerabilities in the following code
and suggest fixes:
[Paste vulnerable code here]
Please diagnose based on OWASP Top 10.
Learning Point: Security analysis
Prompt 033: Incident Report Creation
Please create an incident report from the following information:
Occurrence date/time: 2024/12/20 15:30
Recovery date/time: 2024/12/20 16:45
Impact: Order processing stopped for 1 hour 15 minutes
Cause: Insufficient disk space on DB server
Response: Deleted unnecessary logs, expanded disk capacity
Learning Point: Incident documentation
Prompt 034: API Design
Please design a REST API for a user management system.
Include the following functions:
- User registration
- Login/logout
- Profile retrieval/update
- Password change
Show the URL, method, and
request/response examples for each endpoint.
Learning Point: RESTful API design
Prompt 035: Data Modeling
Please design an ERD for a library management system.
Include the following entities:
- Books
- Users
- Lending records
- Authors
- Categories
Define relationships and key attributes.
Learning Point: Database design
Prompt 036: Batch Processing Design
Please design a processing flow for a daily sales aggregation batch
that runs at 2:00 AM.
Requirements:
- Aggregate all order data from previous day
- Calculate sales by product and customer
- Save results to CSV and DB
- Email notification to administrator in case of errors
Learning Point: Batch processing design
Prompt 037: Migration Plan Creation
Please create a migration plan from on-premises to AWS.
Current state:
- Web servers: 3
- DB servers: 2 (replication)
- File server: 1 (1TB)
- Operation hours: 24/7/365
Learning Point: Cloud migration planning
Prompt 038: Performance Test Planning
Please create a performance test plan for an EC site.
Goals:
- Concurrent users: 1000
- Response time: Within 3 seconds
- Availability: 99.9%
Please suggest test scenarios and tools.
Learning Point: Testing non-functional requirements
Prompt 039: Operation Procedure Manual Creation
Please create a daily operation procedure manual
for a web application.
Items to include:
- Log check
- Backup verification
- Resource usage check
- Alert response
Learning Point: Creating operational documentation
Prompt 040: Estimation Support
Please create a workload estimate for
the following feature development:
- User authentication feature (OAuth compatible)
- Product search feature (full-text search)
- Order processing feature (including payment integration)
- Admin panel (CRUD operations)
Show detailed tasks and workload for each feature.
Learning Point: Project estimation
ð Level 41-55: Intermediate - Prompt Engineering {#level41-55}
Prompt 041: Few-shot Learning
Please create new test cases based on the following examples:
Example 1:
Input: null
Expected result: NullPointerException
Description: Null value processing check
Example 2:
Input: ""
Expected result: Empty string error
Description: Empty string validation
Example 3:
Input: "test@example.com"
Expected result: Normal processing
Description: Correct email address format
New test case: Password validation feature
Learning Point: Learning guidance through examples
Prompt 042: Chain of Thought
Please solve the following problem step by step:
System response is slow.
It becomes particularly slow around 14:00 every day.
CPU and memory are within normal range.
Database connection count is close to the limit.
Please identify the cause and countermeasures
while showing your thought process.
Learning Point: Visualizing thought processes
Prompt 043: Detailed Role Definition
You are an architect with the following characteristics:
- Experience: 15 years in financial systems
- Specialty: High availability system design
- Focus: Security and compliance
- Personality: Cautious and detail-oriented
From this position, please propose an architecture
for a cryptocurrency trading system.
Learning Point: Detailed persona setting
Prompt 044: Complex Constraints
Please design a system under the following constraints:
Technical constraints:
- Language: Java 11 or later
- Framework: Spring Boot 2.x
- DB: PostgreSQL 12 or later
Business constraints:
- Budget: 20 million yen
- Period: 4 months
- Team: 5 people (3+ years Java experience)
Non-functional requirements:
- Availability: 99.5% or higher
- Response: Within 3 seconds
- Concurrent connections: 500 users
Learning Point: Managing multi-layered constraints
Prompt 045: Iterative Improvement
Please improve the following code 3 times.
Improve from a different perspective each time:
1st time: Improving readability
2nd time: Optimizing performance
3rd time: Improving maintainability
[Paste code to be improved here]
Please explain what you changed in each improvement.
Learning Point: Gradual quality improvement
Prompt 046: Context Injection
Background information:
Our company is a manufacturing company with 500 employees.
We are currently considering systemizing our inventory management,
which is currently managed in Excel.
Annual transaction amount is about 1 billion yen,
with about 3000 SKUs.
Based on this background,
please create requirements for an inventory management system.
Learning Point: Utilizing background information
Prompt 047: Enhanced Output Structuring
Please output the design of microservices
in the following JSON format:
{
"services": [
{
"name": "Service name",
"responsibility": "Responsibility",
"api": [
{
"endpoint": "URL",
"method": "HTTP method",
"description": "Description"
}
],
"database": {
"type": "DB type",
"tables": ["Table name"]
},
"dependencies": ["Dependent service"]
}
]
}
Please design 5 services using an EC site as an example.
Learning Point: Strict output format specification
Prompt 048: Critical Review
Please review the following architecture design and
point out 5 or more potential issues:
[Describe architecture here]
For each issue:
1. Explanation of the problem
2. Potential impacts
3. Improvement suggestions
Learning Point: Critical analysis capability
Prompt 049: Simulation
Please simulate the behavior of a system
in the following scenario:
System: EC site
Event: Flash sale start
Conditions:
- 10x normal access
- Product with 100 items in stock
- 1000 people attempting to purchase simultaneously
Please describe in detail what will happen
and what problems may occur in chronological order.
Learning Point: Dynamic scenario analysis
Prompt 050: Meta-prompt Utilization
I want to solve the following challenge:
"Microservice conversion of legacy systems"
Please suggest 5 questions I should ask next
to solve this challenge, with priority.
Also, please provide specific examples of prompts
for each question.
Learning Point: Self-generating prompts
Prompt 051: In-depth Comparative Analysis
Please compare the following 3 approaches
across 6 evaluation axes:
Approaches:
1. Monolithic
2. Microservices
3. Serverless
Evaluation axes:
- Development speed
- Operational cost
- Scalability
- Maintainability
- Required team skills
- Implementation risk
Please show scores (1-5) and reasons in a table format.
Learning Point: Multi-dimensional evaluation
Prompt 052: Domain Knowledge Utilization
You are a system architect familiar with
Japanese financial regulations.
Please design a security architecture
for an online banking system that meets
the following requirements:
- Compliance with Financial Services Agency guidelines
- PCI DSS compliance
- 24/7/365 operation
Please clearly indicate how it corresponds to regulatory requirements.
Learning Point: Applying specialized knowledge
Prompt 053: Error Handling Design
Please design a comprehensive
error handling strategy for the following system:
System configuration:
- Frontend (React)
- BFF (Node.js)
- Microservices (Java)
- Database (PostgreSQL)
- External API integration
Include error handling policies for each layer,
error code system, and log design.
Learning Point: Cross-layer design
Prompt 054: Performance Optimization
Please analyze the following bottleneck
and propose optimization solutions:
Symptoms:
- Response delay at 9 AM
- Only specific APIs affected
- CPU usage around 50%
- Plenty of memory available
- DB connections normal
APM tool data:
- Average response time for relevant API: 15 seconds
- DB query time: 2 seconds
- External API call: 12 seconds
Please propose step-by-step investigation procedures
and countermeasures.
Learning Point: Problem analysis process
Prompt 055: Architecture Evolution
Please create a plan to gradually evolve
the following system over 3 years:
Current state:
- Monolithic application
- Single database
- Daily batch processing
Goal:
- Microservices
- Event-driven
- Real-time processing
Please present goals and migration procedures for each year,
including risks and countermeasures.
Learning Point: Long-term planning
ð Level 56-70: Intermediate-Advanced - Application to Specialized Business {#level56-70}
Prompt 056: Complex Debugging Support
Please identify the problem in the following situation:
Symptoms:
- Occurs only in production environment
- Every Monday morning
- Affects only specific users
- No errors in logs
- Screen goes blank
Environment information:
- React + Redux
- nginx reverse proxy
- Spring Boot backend
- PostgreSQL
- Redis session management
Please present investigation procedures and
possible causes with priority.
Learning Point: Troubleshooting complex problems
Prompt 057: Architecture Review Automation
Please create an architecture review checklist
from the following perspectives,
and indicate verification methods for each item:
1. Security
2. Scalability
3. Availability
4. Maintainability
5. Cost efficiency
6. Technical debt
Please also define evaluation criteria
to score review results.
Learning Point: Systematizing quality assessment
Prompt 058: Infrastructure Code Generation
Please generate Terraform code for the following requirements:
AWS environment:
- VPC (3 AZs)
- Public/private subnets
- ALB + Auto Scaling (min 2, max 10)
- RDS PostgreSQL (Multi-AZ)
- ElastiCache Redis
- S3 + CloudFront
Please also properly configure security groups
and IAM roles.
Learning Point: IaC practice
Prompt 059: CI/CD Pipeline Design
Please design a GitLab CI/CD pipeline
for the following project:
Project structure:
- Frontend (React)
- Backend (Spring Boot)
- Infrastructure (Terraform)
Requirements:
- Unit tests required
- SonarCloud integration
- Security scanning
- Automatic deployment (dev/stg/prod)
- Rollback capability
Please create a .gitlab-ci.yml file.
Learning Point: DevOps practice
Prompt 060: Data Migration Strategy
Please create a data migration plan for the following:
Source:
- Oracle 12c
- Data volume: 5TB
- Number of tables: 500
- Daily increase: 10GB
Destination:
- PostgreSQL 14
- AWS RDS
Constraints:
- Downtime: Maximum 4 hours
- Data integrity essential
- Rollback possible after migration
Please include detailed procedures and risk mitigation.
Learning Point: Large-scale data migration
Prompt 061: Microservice Decomposition
Please decompose the following monolithic system
into microservices:
Current functions:
- User management
- Product management
- Inventory management
- Order processing
- Payment processing
- Shipping management
- Report generation
Please propose domain boundary identification,
inter-service communication methods,
and data consistency approaches.
Learning Point: Domain-driven design
Prompt 062: Monitoring & Alert Design
Please design a monitoring system for the following:
Target system:
- Microservices (10)
- Kubernetes cluster
- RDS, ElastiCache
- External API integration
Requirements:
- SLO: 99.9%
- MTTR: Within 30 minutes
- Preventive detection
Please design metrics, alert rules, and dashboards
using Prometheus + Grafana.
Learning Point: Implementing observability
Prompt 063: Security Audit
Please conduct a security audit of
the following code and infrastructure configuration:
[System architecture diagram]
[Sample code]
[Network configuration]
Please evaluate based on OWASP Top 10,
CIS Benchmarks, and
AWS security best practices,
and propose improvements with priority.
Learning Point: Security evaluation
Prompt 064: Load Testing Scenario
Please create load testing scenarios
for an EC site's year-end sale:
Expected load:
- 20x normal access
- Concurrent purchasers: 5000
- Number of products: 10000 SKUs
Please create test scripts using JMeter or Gatling,
and define metrics to monitor and
judgment criteria.
Learning Point: Performance test design
Prompt 065: Disaster Recovery Plan
Please formulate a DR plan for the following system:
System:
- Financial transaction system
- RTO: 1 hour
- RPO: 5 minutes
- Annual availability: 99.99%
Current configuration:
- Single Tokyo region
- Daily backups
Please propose a cost-effective DR configuration
and switchover procedures.
Learning Point: Business continuity planning
Prompt 066: Cost Optimization Analysis
Please propose cost optimization for
the following AWS environment:
Current monthly cost: $50,000
Breakdown:
- EC2: $20,000 (50 instances)
- RDS: $10,000 (10 instances)
- Data transfer: $8,000
- S3: $5,000 (50TB)
- Others: $7,000
Usage patterns:
- High load only during weekday daytime
- Development environments unused at night
- Log retention period: Unlimited
Please propose specific measures to achieve
20% cost reduction.
Learning Point: Cloud cost optimization
Prompt 067: API Gateway Design
Please design an API Gateway for
the following requirements:
Requirements:
- Integration of 10 microservices
- Authentication/authorization (OAuth2.0)
- Rate limiting (by user)
- Caching
- Request/response transformation
- API versioning
Please show implementation methods using
Kong or AWS API Gateway.
Learning Point: API management platform
Prompt 068: Log Analysis Platform
Please design a log analysis platform
for the following:
Log sources:
- Application logs (1TB/day)
- Access logs (500GB/day)
- System logs (100GB/day)
- Audit logs
Requirements:
- Real-time analysis
- 30 days searchable
- 1 year archiving
- Compliance support
Please propose a configuration using
ELK stack or AWS environment.
Learning Point: Log platform design
Prompt 069: Machine Learning Pipeline
Please design a machine learning pipeline
for the following requirements:
Use case:
- Product recommendations
- Daily retraining
- Real-time inference
Data:
- User behavior logs (100 million/day)
- Product master (1 million SKUs)
- Purchase history
Please propose an architecture and
implementation method including MLOps aspects.
Learning Point: ML platform design
Prompt 070: Technical Debt Evaluation
Please evaluate the technical debt
of a system that has been operating for 10 years:
Current state:
- Java 8 + Struts 1.x
- Oracle 11g
- SVN management
- Manual deployment
- Test coverage: 20%
- Documentation: Outdated
Please define evaluation criteria and
create an improvement roadmap with priorities.
Learning Point: Legacy evaluation
ð Level 71-85: Advanced - Advanced Utilization Techniques {#level71-85}
Prompt 071: Architecture Decision Record
Please create an ADR (Architecture Decision Record)
for the following architecture decision:
Context:
Database selection for a large-scale EC site
Options:
1. PostgreSQL
2. MongoDB
3. DynamoDB
4. CockroachDB
Evaluation axes:
- Scalability
- Consistency guarantees
- Operational cost
- Learning cost
- Ecosystem
Please document the decision and its rationale
in a structured manner.
Learning Point: Documenting decisions
Prompt 072: Event Storming Facilitation
Please simulate an Event Storming session
for the following business domain:
Domain: Online insurance application system
Stakeholders:
- Customers
- Insurance advisors
- Underwriters
- System administrators
Please identify the following:
1. Domain events
2. Commands
3. Aggregates
4. Bounded contexts
5. Policies
Please visualize the results in a Miro board style.
Learning Point: DDD practical techniques
Prompt 073: Chaos Engineering Plan
Please create a chaos engineering experiment plan
for the following system:
System configuration:
- Kubernetes (3 nodes)
- Microservices (15)
- Istio service mesh
- PostgreSQL (replication)
- Redis cluster
Experiment scenarios:
1. Defining steady state
2. Hypothesis setting
3. Experiment design
4. Minimizing blast radius
5. Execution and observation
6. Learning and improvement
Please provide details for each phase.
Learning Point: Resilience verification
Prompt 074: GraphQL API Design
Please design a GraphQL API for
the following requirements:
Domain: Social media platform
Entities:
- User
- Post
- Comment
- Like
- Follow
Requirements:
- Real-time updates (Subscription)
- Pagination
- Authentication/authorization
- Avoiding N+1 problem
- Rate limiting
Please include schema definitions and
implementation notes.
Learning Point: Modern API design
Prompt 075: Distributed Transaction Design
Please design distributed transactions
for the following scenario:
Scenario: EC site order processing
Related services:
- Order service
- Inventory service
- Payment service
- Shipping service
- Notification service
Requirements:
- Eventual consistency acceptable
- Compensating transactions required
- Audit trail
Please design in detail using the Saga pattern.
Learning Point: Distributed system design
Prompt 076: Zero Trust Security
Please create a plan to introduce
a zero trust security model to
the following enterprise system:
Current state:
- VPN access to internal network
- Firewall boundary defense
- AD authentication
Target configuration:
- Device authentication
- Continuous verification
- Least privilege access
- Encrypted communications
Please present a migration roadmap and
necessary components.
Learning Point: Latest security model
Prompt 077: SRE Practice Introduction
Please create a plan to transform
a traditional operations team into an SRE team:
Current state:
- Manual operations focused
- Incident response is ad-hoc
- Change work with planned outages
Goals:
- SLI/SLO driven
- Error budget management
- Toil reduction
- Automation promotion
Please plan from both organizational change
and technology introduction perspectives.
Learning Point: SRE culture introduction
Prompt 078: Edge Computing Design
Please introduce edge computing to
the following IoT system:
Requirements:
- Number of sensors: 10,000
- Data transmission interval: 1 second
- Real-time anomaly detection
- Bandwidth limitation: 1Mbps/site
- Number of sites: 100
Architecture:
- Edge processing content
- Cloud integration
- Data synchronization strategy
- Machine learning model distribution
Please provide detailed design.
Learning Point: Edge/cloud integration
Prompt 079: Blockchain Utilization
Please design an application of
blockchain technology for
the following use case:
Use case: Supply chain tracking
Requirements:
- Tracking from manufacturing to consumer
- Tamper prevention
- Privacy protection
- Existing system integration
Please include:
- Blockchain platform selection
- Smart contract design
- Off-chain data strategy
- Performance considerations
Learning Point: Distributed ledger technology
Prompt 080: Quantum Computing Readiness
Please create a migration plan to
make current encryption systems
ready for the quantum computing era:
Current state:
- RSA-2048
- AES-256
- SHA-256
Action items:
- Migration to quantum-resistant cryptography
- Hybrid encryption
- Key management system update
- Backward compatibility maintenance
Please create a 5-year migration roadmap.
Learning Point: Preparing for future technologies
Prompt 081: AI Operations Platform
Please design an AIOps platform for
the following requirements:
Monitoring targets:
- 1000 servers
- 50 applications
- 10 types of middleware
Functional requirements:
- Anomaly detection (unsupervised learning)
- Root cause analysis
- Predictive scaling
- Self-healing
Please propose architecture and
implementation approaches.
Learning Point: AI-driven operations
Prompt 082: Multi-cloud Strategy
Please design a multi-cloud architecture
for the following requirements:
Requirements:
- Avoiding vendor lock-in
- Geographic redundancy
- Cost optimization
- Compliance support
Cloud services:
- AWS (main)
- Azure (DR)
- GCP (AI/ML)
Please propose integrated management methods
and workload placement strategies.
Learning Point: Cloud strategy
Prompt 083: Technical Due Diligence
Please conduct technical due diligence
for an M&A target company's systems:
Evaluation items:
- Architecture
- Code quality
- Technical debt
- Security
- Scalability
- Team capability
- Licensing
Please create checklists and
evaluation report templates.
Learning Point: Technical evaluation methodology
Prompt 084: Green IT Strategy
Please create a carbon neutralization plan
for a data center:
Current state:
- 1000 servers
- PUE: 2.0
- Annual power consumption: 10GWh
Goals:
- Net zero by 2030
- PUE: Below 1.2
Include plans for:
- Power reduction
- Renewable energy
- Cooling efficiency
- Workload optimization
Learning Point: Sustainability
Prompt 085: Full-stack Optimization
Please perform end-to-end optimization
for the following web application:
Current performance:
- TTFB: 3 seconds
- FCP: 5 seconds
- TTI: 8 seconds
- Bundle size: 5MB
Stack:
- Next.js
- GraphQL
- PostgreSQL
- Redis
- nginx
Goals:
- Achieve Core Web Vitals
- 50% speed improvement
Please propose optimization solutions
for each layer.
Learning Point: Integrated optimization
ð Level 86-100: Ultra Advanced - Expert Level {#level86-100}
Prompt 086: Enterprise Transformation
Please formulate a 5-year digital transformation plan
for a legacy financial institution:
Current state:
- COBOL core systems (40 years)
- 2000 people in IT department
- Waterfall development
- 3 data centers
- Annual IT budget: 50 billion yen
Vision:
- Cloud native
- API economy
- Agile organization
- Data-driven management
Please create a transformation roadmap
for organization, technology, and culture.
Learning Point: Large-scale transformation management
Prompt 087: Next-generation Architecture
Please design a next-generation system architecture
looking ahead to 2030:
Technologies to consider:
- Quantum computing
- 6G networks
- Neuromorphic computing
- Autonomous AI
- Augmented reality
Use case:
- Smart city infrastructure
Please organize requirements, architecture,
and technical challenges for realization.
Learning Point: Future technology design
Prompt 088: Global System Design
Please design a financial payment system
that will be used in 200 countries:
Requirements:
- Compliance with each country's regulations
- 24/7/365 operation
- 10 billion transactions/day
- Latency: <100ms
- Availability: 99.999%
Considerations:
- Data residency
- Multi-currency support
- Time zones
- Languages/cultures
Please present a detailed architecture.
Learning Point: Ultra-large-scale design
Prompt 089: AI Governance Framework
Please construct an AI governance framework
for a company:
Targets:
- Operation of 1000 AI models
- Use of confidential data
- Decision-support AI
Framework:
- Ethical principles
- Risk management
- Quality assurance
- Explainability
- Bias countermeasures
- Privacy protection
Please include policies, processes,
and technical implementation.
Learning Point: AI governance
Prompt 090: Hyperscale Design
Please design a hyperscale platform
for the following requirements:
Requirements:
- Support for 1 billion users
- Exabyte-scale data
- 1 million requests per second
- Deployment across 5 continents
- Multi-language/multi-currency
Please propose an architecture assuming
Netflix or Facebook scale.
Learning Point: Extreme scale
Prompt 091: Complex System Analysis
Please analyze the behavior of a system
with 50 interdependent microservices:
Challenges:
- Cascade failures
- Performance degradation propagation
- Consistency guarantees
- Debugging difficulty
Please present:
- Dependency visualization
- Failure propagation model
- Resilience quantification
- Improved architecture
Learning Point: Understanding complex systems
Prompt 092: Maximizing Business Impact
Please formulate a strategy to maximize
the business impact of technology investment:
Budget: 10 billion yen/year
Period: 3 years
Evaluation axes:
- Revenue contribution
- Cost reduction
- Risk reduction
- Competitive advantage
- Innovation
Please propose portfolio strategy and
ROI measurement methods.
Learning Point: Technology management
Prompt 093: Industrial DX Design
Please create a grand design for
the digital transformation of an entire factory:
Targets:
- 10 factories
- 10,000 pieces of equipment
- 50,000 workers
Functions to realize:
- Predictive maintenance
- Automated quality control
- Supply chain optimization
- Carbon management
- Worker skill management
Please design an IT/OT integrated architecture.
Learning Point: Industrial IoT
Prompt 094: Crisis Management Simulation
Please simulate crisis management response
in the following scenario:
Scenario:
Large-scale cyber attack resulting in
- Suspected leak of 10 million customer records
- Core system shutdown
- Ransomware infection
Please detail in timeline:
- Initial response
- Investigation and analysis
- Recovery plan
- External communication
- Recurrence prevention
Learning Point: Crisis management
Prompt 095: Technology Fusion
Please design an innovative system
that fuses the following technologies:
Technology elements:
- Blockchain
- AI/Machine Learning
- IoT
- 5G
- AR/VR
- Quantum technology
Use case:
Next-generation medical system
Please include feasibility and
phased implementation plan.
Learning Point: Technology fusion
Prompt 096: Architect Development
Please design a development program
for enterprise architects:
Target: Mid-level engineers
Period: 2 years
Goal: World-class architects
Curriculum:
- Technical skills
- Business skills
- Communication
- Thinking methods
- Practical projects
Please create a detailed program.
Learning Point: Talent development
Prompt 097: Technical Debt Resolution Strategy
Please formulate a strategy to resolve
technical debt equivalent to 100 billion yen:
Debt breakdown:
- Legacy code: 40%
- Old infrastructure: 30%
- Inappropriate design: 20%
- Lack of documentation: 10%
Constraints:
- Annual budget: 5 billion yen
- Business continuity essential
- No personnel increase possible
Please create a 5-year plan.
Learning Point: Debt management
Prompt 098: Innovation Creation
Please design a mechanism for
technology-driven innovation creation:
Goals:
- Creation of 10 new businesses per year
- 100 billion yen scale business in 5 years
Elements:
- Idea generation
- PoC implementation
- Business judgment
- Scaling strategy
- Failure-tolerant culture
Please design organization and processes.
Learning Point: Innovation management
Prompt 099: Ultimate Optimization
Please optimize the following system
to theoretical limits:
Target: Real-time trading system
Current state:
- Latency: 10ms
- Throughput: 100,000/second
- Availability: 99.99%
Goals:
- Latency: <1ms
- Throughput: 1,000,000/second
- Availability: 99.999%
Please propose optimization at all layers:
hardware, OS, network, and application.
Learning Point: Extreme optimization
Prompt 100: Future Prediction and Response
Please predict changes in the IT industry
over the next 10 years, and propose
what an IT consultant should prepare:
Consideration factors:
- Technology trends
- Business model changes
- Regulatory trends
- Social changes
- Geopolitical risks
Please create a roadmap of actions
to take as an individual and as an organization.
Finally, please suggest next steps
after completing this roadmap.
Learning Point: Future insight
ð Appendix: Troubleshooting Collection {#appendix}
Common Problems and Solutions
1. AI doesn't respond as expected
Solution Prompt:
Your answer was different from my expectations.
What I really wanted to know was [specific content].
Please answer again from the following perspectives:
1. [Perspective 1]
2. [Perspective 2]
3. [Perspective 3]
2. Answer is too abstract
Solution Prompt:
Please explain using more concrete examples.
Include actual code, commands,
or configuration file examples.
3. Answer is too long/short
Solution Prompt:
Please adjust your answer to about [100/500/1000] characters
and answer again.
Please prioritize important points.
4. Too many technical terms
Solution Prompt:
Please explain without using technical terms,
so that a new engineer can understand.
Please explain any necessary technical terms as you go.
5. Don't understand implementation method
Solution Prompt:
Please teach me step by step how to
actually implement this concept.
Start from environment setup and
include verification steps.
Meta-prompt Collection
Request for Improvement
What questions should I ask
to further improve this answer?
Please suggest 5.
Comprehension Check
What are the 3 most important points
I should understand from this explanation?
Practical Application
Please show 3 specific scenarios
where I can apply this knowledge
in practical work.
Tips to Maximize Learning Effect
- Always execute - Don't just read, actually try it
- Analyze results - Consider why that response was generated
- Modify and re-execute - Modify prompts and observe differences
- Apply to work - Immediately use learned techniques in your job
- Share with team - Good prompts are organizational assets
ð Congratulations on Completion!
Having completed this roadmap,
you are now an expert in utilizing generative AI.
Next Steps
- Specialization - Create prompt collections specialized for your field
- Automation promotion - Business automation using APIs
- Team deployment - Promote AI utilization across the organization
- Latest trends - Continuous adaptation to new AI technologies
- Contribution - Share knowledge with the community
Finally
Generative AI is a tool.
Its true value depends on the user.
Use the power you gained from this roadmap
to create a better future.
Now, let's soar as IT professionals
in this new era of walking alongside AI!
Discussion