Zenn
🌊

Matrix diagonalization

2024/02/24に公開

Let ARN×NA \in \R^{N \times N}, PRN×NP \in \R^{N \times N}, and {λnR}n=1N\set{\lambda_n \in \R}_{n=1}^N.

The diagonalization of AA is described as:

A=PΛP1,Λ=(λ1λ2λN)\begin{align*} A = P \Lambda P^{-1} ,\quad \Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_N \\ \end{pmatrix} \end{align*}

where λ1,λ2,,λN\lambda_1, \lambda_2, \dots, \lambda_N are eigenvalues of PP, and the nn-th column vector PnRNP_n \in \R^N is the nn-th eigenvector corresponding to λn\lambda_n.


APn=λnPn\begin{align*} A P_n &= \lambda_n P_n \\ \end{align*}

because

APn=PΛP1Pn=PΛen=Pλnen=λnPen=λnpn\begin{align*} A P_n &= P \Lambda P^{-1} P_n \\ &= P \Lambda e_n \\ &= P \lambda_n e_n \\ &= \lambda_n P e_n \\ &= \lambda_n p_n \\ \end{align*}

Let's consider AyA y where ARN×NA \in \R^{N \times N}, yRNy \in \R^N.

When we have the diagonalization A=PΛP1A = P \Lambda P^{-1}, we can calculate AyA y more easily, like,

Ay=A(n=1NwnPn)=n=1NwnAPn=n=1Nwn(λnPn)\begin{align*} A y &\overset{\flat}{=} A \left( \sum_{n=1}^N w_n P_n \right) \\ &= \sum_{n=1}^N w_n A P_n \\ &= \sum_{n=1}^N w_n (\lambda_n P_n) \\ \end{align*}

=\overset{\flat}{=} comes from yy being represented as y=n=1NwnPny = \sum_{n=1}^N w_n P_n (see: this link).

And w=A1y,w={wn}n=1Nw = A^{-1}y, \quad w = \set{w_n}_{n=1}^N.

Discussion

ログインするとコメントできます