🍪
【Directory Management】How to use Cookiecutter Data Science
1. What is this?
Official site:
Cookiecutter Data Science is a tool for making directory template to machine learning.
By using this, you can create directory like this:
Directroy architecture
├── LICENSE <- Open-source license if one is chosen
├── Makefile <- Makefile with convenience commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default mkdocs project; see www.mkdocs.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── pyproject.toml <- Project configuration file with package metadata for
│ {{ cookiecutter.module_name }} and configuration for tools like black
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.cfg <- Configuration file for flake8
│
└── {{ cookiecutter.module_name }} <- Source code for use in this project.
│
├── __init__.py <- Makes {{ cookiecutter.module_name }} a Python module
│
├── config.py <- Store useful variables and configuration
│
├── dataset.py <- Scripts to download or generate data
│
├── features.py <- Code to create features for modeling
│
├── modeling
│ ├── __init__.py
│ ├── predict.py <- Code to run model inference with trained models
│ └── train.py <- Code to train models
│
└── plots.py <- Code to create visualizations
This is very organized and great.
2. Install
pipx install cookiecutter-data-science
or
pip install cookiecutter-data-science
3. Use
Execute just this:
ccds
Then, you get many question to create directory. You should choice it with a light heart, and when you make a mistake, delete directory and retry!
This is great as is, but be more better by do like this:
This from @pluck.
├── project
│ ├── __init__.py
│ ├── train.py <- Switch the model below when train
│ │
│ ├── data
│ │ └── make_dataset.py
│ │
│ ├── models
│ │ │
│ │ ├── base <- define base class
│ │ │ ├── __init__.py
│ │ │ ├── model.py
│ │ │ └── preprocess.py
│ │ ├── lightgbm
│ │ │ ├── __init__.py
│ │ │ ├── model.py
│ │ │ └── preprocess.py
│ │ └── cnn
│ │ ├── __init__.py
│ │ ├── model.py
│ │ └── preprocess.py
│ │
│ └── visualization
│ └── visualize.py
4. Summary
Cookiecutter Data Science makes your machine learning life more confortly. Please try it.
Reference
[1] Cookiecutter Data Science
[2] Cookiecutter Data Scienceの改善案
Discussion