🌊

Nelder-Mead法による最適化問題

2021/05/16に公開

Nelder-Mead法について調べたことのメモとJavaScriptによる実装を記す。

関数の最小値(または最大値)を求める最適化問題の解法には、勾配法を用いるのが一般的です。
しかし導関数が必ずしも得られるとは限らないし、自分で書く場合逆行列の計算ができなかったときの処理とかが大変に面倒くさい。

そんなときの選択肢となるのがNelder-Mead法。
https://www.kimoton.com/entry/20200624/1592944325

2010年にはAdaptive Nelder-Mead Method(ANMM)と呼ばれる、より高速な手法が登場する。

Implementing the Nelder-Mead simplex algorithm with adaptive parameters
https://www.webpages.uidaho.edu/~fuchang/res/ANMS.pdf
これを日本語で解説してくれているサイト
http://ar.nyx.link/min/
大変わかりやすい記事と論文で感謝

function nelderMead (f, x0, options) {
  const { maxIteration, eps } = Object.assign(
    {
      maxIteration: 100000,
      eps: 1.0e-8,
    },
    options
  );
  const n = x0.length;
  if (n < 1) throw new Error("x0's length must be at least one.");

  const alpha = 1.0;
  const beta = n < 3 ? 2 : 1.0 + 2 / n;
  const gamma = n < 3 ? 0.5 : 0.75 - 0.5 / n;
  const sigma = n < 3 ? 0.5 : 1.0 - 1 / n;
  const points = [x0];
  const fs = [f(x0)];
  for (let i = 0; i < n; i++) {
    const x = [];
    const tau = Math.abs(x0[i]) < 1.0e-8 ? 0.00025 : 0.05;

    for (let j = 0; j < n; j++) {
      x[j] = j === i ? x0[j] + tau : x0[j];
    }
    points.push(x);
    fs.push(f(x));
  }
  let orders = sortOrder(fs),
    iteration = 0;

  while (iteration < maxIteration) {
    let store = null;
    const c = centroid(points, orders[orders.length - 1]),
      u1 = orders[orders.length - 1],
      xu1 = points[u1],
      fu1 = fs[u1],
      u2 = orders[orders.length - 2],
      fu2 = fs[u2],
      l = orders[0],
      xl = points[l],
      fl = fs[l];

    //Relection
    const xr = [];
    for (let i = 0; i < n; i++) {
      xr.push(c[i] + alpha * (c[i] - xu1[i]));
    }
    const fr = f(xr);
    if (fr < fl) {
      //Expansion
      const xe = [];
      for (let i = 0; i < n; i++) {
        xe.push(c[i] + beta * (xr[i] - c[i]));
      }
      const fe = f(xe);
      if (fe < fr) {
        store = [xe, fe];
      } else {
        store = [xr, fr];
      }
    } else if (fr < fu2) {
      store = [xr, fr];
    } else {
      //Contraction
      const xc = [];
      if (fr < fu1) {
        //Outside
        for (let i = 0; i < n; i++) {
          xc.push(c[i] + gamma * (xr[i] - c[i]));
        }
        const fc = f(xc);
        if (fc <= fr) {
          store = [xc, fc];
        }
      } else {
        //Inside
        for (let i = 0; i < n; i++) {
          xc.push(c[i] - gamma * (xr[i] - c[i]));
        }
        const fc = f(xc);
        if (fc < fu1) {
          store = [xc, fc];
        }
      }
      if (!store) {
        //Shrink
        for (let i = 1; i < n + 1; i++) {
          const o = orders[i];
          const xi = [];
          for (let j = 0; j < n; j++) {
            xi[j] = xl[j] + sigma * (points[o][j] - xl[j]);
          }
          points[o] = xi;
          fs[o] = f(xi);
        }
      }
    }

    if (store) {
      const [x, fvalue] = store;
      points[u1] = x;
      fs[u1] = fvalue;
    }
    orders = sortOrder(fs);

    let done = true;
    const center = centroid(points);
    for (let i = 0; i < n + 1; i++) {
      for (let j = 0; j < n; j++) {
        if (Math.abs(points[i][j] - center[j]) > eps) {
          done = false;
          break;
        }
      }
    }
    if (done) break;
    iteration += 1;
  }

  const center = centroid(points);
  const fc = f(center);
  if (fc < fs[orders[0]]) {
    return [center, fc, iteration, iteration < maxIteration];
  }
  return [
    points[orders[0]],
    fs[orders[0]],
    iteration,
    iteration < maxIteration,
  ];
};

Rosenbrock Banana function[1]を試す。

const f = (x) => {
  return (1 - x[0]) ** 2 + 100 * (x[1] - x[0] ** 2) ** 2;
};
const x0 = [0, 0];
const [x, fmin, iter, success] = nelderMead(f, x0);
// [
//     [ 0.9999999976422846, 0.9999999951910932 ],
//     6.432600122573516e-18,
//     106,
//     true
//  ]
脚注
  1. https://en.wikipedia.org/wiki/Rosenbrock_function ↩︎

Discussion