DNNの汎化、平坦性、圧縮アプローチ、PAC-bayes理論の適用
DNNのoverparameterazationを説明する仮説はいくつか提唱されている
- 最適な解は高次元のパラメーター空間で平坦に分布している(最適解、それに近い値同士はつながっている)
- 初期値周辺に最適解がある
- パラメーターの値が狭い範囲でしか動かない
関係ありそうな論文とその概要、感想、展望など
姉妹サイト https://github.com/xiangze/ronbun_memon/tree/master/deeplearning_generization
- double descentの数値実験、理論的説明
- 積分表現理論
- PAC-Bayes
- ランダム行列、スピングラス理論
- 学習軌道の力学系、軌道の可視化
- 拡散モデル、CNN等具体的なネットワークへの応用
- 情報幾何学、NTKによる解析
などの研究について紹介する予定
PAC-Bayes理論は統計モデルの汎化誤差の上界を与える
- https://qiita.com/student-i/items/341f1fd720d4b6b26d7b
- https://dora119.hateblo.jp/entry/2020/05/20/032806
そこでもし学習したネットワークがflat minimaに存在していた場合、その周囲の誤差はネットワークのそれと近い値になることが期待できるわけだから、そのflat minimaのあたりで確率的に揺れてるネットワークを事後分布とすることで上手くいきそうな気がする
さらに、flatであればあるほど事後分布が感覚的に大きくなるわけだから、事前分布とマッチしやすくなり(つまりKLダイバージェンスが小さくなり)結果として汎化誤差の上界が小さくなりそう、、、という話らしい
Rはラデマッハー複雑度
複数の上界が提唱されている。
- McAllester's bound
仮説集合Q, 損失関数Lに対して
(
μは任意の測度
- Langford and Seeger Bound
- Catoni's bound
- Alquier's bound
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
TL;DR:最先端のPAC-Bayes圧縮境界を提案し、それを用いてディープラーニングにおける汎化を理解する。
概要:ディープニューラルネットワークの非空白汎化境界の開発は進んでいるが、これらの境界はディープラーニングがなぜ機能するかについて情報を提供しない傾向にある。本論文では、線形部分空間におけるニューラルネットワークパラメータの量子化に基づく圧縮アプローチを開発し、これまでの結果を大幅に改善し、転移学習を含む様々なタスクにおいて最先端の汎化境界を提供します。これらの厳しい境界を利用して、深層学習における汎化のためのモデルサイズ、等変量性、最適化の暗黙のバイアスの役割をよりよく理解することができる。特筆すべきは、大きなモデルは、これまで知られていたよりもはるかに大きな範囲で圧縮できることであり、オッカムの剃刀を内包していることがわかった。
訓練データの数よりも多くのパラメータがあるにもかかわらず、深層学習モデルは極めてよく汎化し、ランダムなラベルにさえ適合することができます[72]。これらの観測はVC次元やラデマッハー複雑度といった古典的な統計的学習理論では説明できない仮説クラスに対する一様な収束に焦点を当てる[53]。これに対してPAC-Bayesフレームワークは汎化ギャップが仮説集合全体ではなく学習によって発見された深層学習モデルに依存する汎化境界を構築する便利な方法を提供する。
例えば、低スペクトルノルム [57]、 ノイズの安定性 [2]、フラットミニマム [30]、非ランダム化 [55]、頑健性、圧縮 [2, 73]など、訓練データセットによって誘発される深層学習モデルの特性を利用した様々な説明が提案されている。
In this work, we show that neural networks, when paired with structured training datasets, are substantially more compressible than previously known. Constructing tighter generalization bounds than have been previously achieved
主張
compression alone is sufficient to explain many generalization properties of neural networks.
これはどのようにして論証されるのだろうか?
特に
-
- 圧縮されたニューラルネットワークを訓練するために、圧縮サイズを問題の難易度に適応させる新しいアプローチを開発する。パラメータのランダムな線形部分空間[45]で学習し、学習した量子化を行う。パラメータ[45]のランダムな線形部分空間で学習し、学習型量子化を実行する。
その結果、与えられた精度レベルにおいて、ニューラルネットワークの圧縮サイズを極めて小さくすることができ、これは厳密な境界を設定するために必要不可欠である(4節参照)。
- 圧縮されたニューラルネットワークを訓練するために、圧縮サイズを問題の難易度に適応させる新しいアプローチを開発する。パラメータのランダムな線形部分空間[45]で学習し、学習した量子化を行う。パラメータ[45]のランダムな線形部分空間で学習し、学習型量子化を実行する。
-
- 事前符号化オッカムの剃刀と我々の圧縮方式を用いて、画像データセットにおいて、データ依存・データ非依存の両プライヤーを用いて、これまでで最も優れた汎化境界を構築する。また、転移学習がどのように圧縮率を向上させるかを示し、事前学習がもたらす実用的な性能の利点を説明する。(5節照)。
-
- PAC-Bayesの境界は、事後に対する事前の適応を制約するのみである。データ依存の事前分布を用いた境界の場合 データ依存の事前分布を持つ境界では、事前分布だけで一般化境界と同等の性能を達成することを示す。汎化境界と同等の性能を達成することを示す。したがって、我々は、データ非依存的な事前分布から構築された データ非依存な事前分布を用いた境界は、汎化を理解する上でより有益である。(5.2節参照)。
-
- 圧縮性のレンズを通して、我々は、深層学習モデルがCIFAR-10のような構造化されたデータセットでは汎化されるが、画素のシャッフルなど構造が破壊された場合、深層学習モデルはCIFAR-10のような構造化されたデータセットで一般化する。同様に、以下の利点も説明します。CNNがMLPを凌駕する理由など、等変数モデルの利点について説明する。最後に、二重降下について調べます。の暗黙の正則化が汎化に必要であるかどうかを検討する(6節参照)
先行研究
Stronger generalization bounds for deep nets via a compression approach
DNNは、訓練サンプルの数よりも多くのパラメーターがあるにもかかわらず、適切に汎化します。最近の研究ではPAC ベイズ分析とマージンベースの分析を使用してこの現象の説明が試みられていますが、単純なパラメーター数のカウントよりも優れたサンプル複雑さの限界はまだ得られていません。実際には桁違いに優れた一般化限界を示しています。これらは、訓練されたネットの新しい簡潔な再パラメータ化、つまり明示的かつ効率的な圧縮に依存しています。ここでは単純な圧縮ベースのフレームワークを介しや汎化限界の生成を紹介します。私たちの結果ではDNNの圧縮における広範な経験的成功に対する理論的正当性も提供します。圧縮の正しさの分析は、訓練されたDNNの新しく特定されたノイズ安定性という特性に依存していてこれは実験的にも検証されています。これらの特性とその結果として得られる汎化限界の研究は、既存の汎化を証明しようとする試みでは回避されていた畳み込みネットにも拡張されています。
入門者向け論文
深層ネットワークでの効率的な学習のための明示的正則化と暗黙的正則化の組み合わせ
概要
暗黙的正則化に関する研究では、深層ネットワークが特定の種類の解を他の解よりも優先する理由を説明するために、最適化中の勾配軌跡が研究されます。深層線形ネットワークでは、勾配降下法が行列の完成/因子分解タスクで低ランクの解に向かって暗黙的に正則化することが示されています。ネットワークに深さを追加すると、これらのタスクのパフォーマンスが向上するだけでなく、低ランクへのバイアスをさらに強化する加速的な事前調整としても機能します。これに触発されて、本研究では特定の適応勾配オプティマイザー (Adamなど) でのみ有効となるこの暗黙的なバイアスを反映する明示的なペナルティを提案します。この組み合わせにより、縮退単層ネットワークが深層線形ネットワークに匹敵する一般化誤差を伴う低ランク近似を達成できるようになり、学習に深さが不要になります。また、単層ネットワークは、その単純さにも関わらず、さまざまなパラメータおよびデータ領域にわたって行列を完成させるためのさまざまなアプローチと同程度か、それを上回るパフォーマンスを発揮します。オプティマイザーの帰納的バイアスと合わせ、私たちの調査結果は明示的な正則化がさまざまな望ましい形式の正則化を設計する際に役割を果たす可能性があり、明示的、暗黙的正則化の相互作用についてより微妙な理解が必要である可能性があることを示唆しています。
先行研究
Contribution
これらの発見にもかかわらず、いくつかの疑問がまだ残っています。
- この現象を改善またはより効率的な学習に利用するために、暗黙の正則化の効果を反映できる明示的な規範ベースのペナルティはありますか? 前作Arora et al. ( 2019 )は、暗黙の正則化は明示的な規範ベースのペナルティによって特徴づけることはできないと推測していますが、これらのペナルティが同様の効果を生み出すことができるかどうかは不明です。
- 暗黙的形式と明示的形式の正則化は意味のある方法で相互作用しますか? より良い種類のパフォーマンスを促進するために、明示的な正則化子を使用してオプティマイザの暗黙的なバイアスを変更することはできますか? Barrett and Dherin ( 2021 )の一部の研究では、暗黙的な正則化からインスピレーションを得て明示的な正則化子を作成し始めていますが、それらの相互作用はそれほど明確ではありません。
- 過去の作品Arora et al. ( 2018b , 2019 )は、深さが収束を加速するための強力な事前条件として機能するか、特定のより単純な解決策またはよく一般化された解決策への暗黙の傾向を強化できることを示しました。深さがなければこの効果は得られますか?