Zenn
📈

[統計学] ガンマ分布の期待値・分散, 可視化, 積率母関数, 再生性,ベイズモデル

2022/12/30に公開

確率密度関数

ガンマ分布の確率密度関数は以下で表される

f(xα,β)=1βαΓ(α)xα1exβif0<x,f(xα,β)=0otherwiseWhere,Γ(α)=0xα1exdx,  0<α \begin{align*} &f(x|\alpha, \beta) = \frac{1}{\beta^\alpha \Gamma{(\alpha)}} x^{\alpha-1} e^{-\frac{x}{\beta}} \quad \text{if}\quad 0<x, \quad f(x|\alpha, \beta)=0 \quad \text{otherwise} \\ &\text{Where,}\quad \Gamma{(\alpha)}=\int_0^\infty x^{\alpha-1} e^{-x} dx,\;0<\alpha \end{align*}

可視化

01: α\alphaを変化させたときのガンマ分布

gamma distribution 1

02: β\betaを変化させたときのガンマ分布

gamma distribution 2

gamma distribution 3

画像を生成するコード
# ライブラリをimport
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import gamma

#描画用の変数を用意する
x = np.arange(0, 10, 0.01)
beta = 1
ys = []
for alpha in [0.9,1,2,3,4]:
    y = [
        gamma.pdf(
            x_,
            a=alpha,
            scale=beta,
            loc=0
        )
        for x_ in x
    ]
    ys.append(y)

# 描画
sns.set()
sns.set_style("whitegrid", {'grid.linestyle': '--'})
sns.set_context("talk", 0.8, {"lines.linewidth": 2})
sns.set_palette("cool", 5, 0.9)

fig=plt.figure(figsize=(16,9))
ax1 = fig.add_subplot(1, 1, 1)
ax1.set_title('Gamma Distribution (beta=1)')
ax1.set_ylabel('probability density')

for y in ys:
    ax1.plot(x,y)

ax1.legend(['alpha=0.9','alpha=1','alpha=2','alpha=3','alpha=4'])
plt.show()

Gamma関数の公式

Γ()\Gamma{(\cdot )} だが, 以下の特徴がある.

Γ(α)=0tα1etdt \Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t

等式

ガンマ関数について以下が成り立つ.

Γ(α)=(α1)Γ(α) \Gamma(\alpha)=(\alpha-1) \Gamma(\alpha)

証明

Γ(α)=0tα1etdt=0tα1{ddtet}dt=[tα1et]0+(α1)0tα2etdt=(00)+(α1)Γ(α1) \begin{align*} \Gamma(\alpha) & =\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t \\ & \left.=\int_{0}^{\infty} t^{\alpha-1} \left\{\, \frac{d}{d t}-e^{-t}\right.\right\} d t \\ & =\left[-t^{\alpha-1} e^{-t}\right]_{0}^{\infty}+(\alpha-1) \int_{0}^{\infty} t^{\alpha-2} e^{-t} d t \\ & =(0-0)+(\alpha-1) \Gamma(\alpha-1) \end{align*}

期待値・分散

期待値・分散は定義からパラメータが元の式とは異なる確率密度関数の積分と定数係数に分けて導出する.

期待値の導出

E(X)=0xfX(x)dx=0xΓ(α)1β1(xβ)α1exβdx=Γ(α)1β10βxβ(xβ)α1exβdx=Γ(α)1β1β0xβ(xβ)α1exβdx=Γ(α)10(xβ)(α+1)1exβdx=Γ(α)1Γ(α+1)β0Γ(α+1)1β1(xβ)(α+1)1exβdx=Γ(α)1αΓ(α)β=αβ \begin{align*} \mathbb{E}(X) & =\int_{0}^{\infty} x f_{X}(x) d x \\ & =\int_{0}^{\infty} x \Gamma(\alpha)^{-1} \beta^{-1}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & =\Gamma(\alpha)^{-1} \beta^{-1} \int_{0}^{\infty} \frac{\beta x}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & =\Gamma(\alpha)^{-1} \beta^{-1} \beta \int_{0}^{\infty} \frac{x}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & =\Gamma(\alpha)^{-1} \int_{0}^{\infty}\left(\frac{x}{\beta}\right)^{(\alpha+1)-1} e^{-\frac{x}{\beta}} d x \\ & =\Gamma(\alpha)^{-1} \Gamma(\alpha+1) \beta \int_{0}^{\infty} \Gamma(\alpha+1)^{-1} \beta^{-1}\left(\frac{x}{\beta}\right)^{(\alpha+1)-1} e^{-\frac{x}{\beta}} d x \\ & =\Gamma(\alpha)^{-1} \alpha \Gamma(\alpha) \beta \\ & =\alpha \beta \end{align*}

分散の導出

E(X2)=0x2fX(x)dx=0x2Γ(α)1β1(xβ)α1exβdx=Γ(α)1β10β2(xβ)2(xβ)α1exβdx=Γ(α)1β1β20(xβ)(α+2)1exβdx=Γ(α)1βΓ(α+2)β0Γ(α+2)1β1(xβ)(α+2)1exβdx=Γ(α)1β2(α+1)αΓ(α)=αβ2(α+1) \begin{align*} \mathbb{E}\left(X^{2}\right) & = \int_{0}^{\infty} x^{2} f_{X}(x) d x \\ & = \int_{0}^{\infty} x^{2} \Gamma(\alpha)^{-1} \beta^{-1}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \int_{0}^{\infty} \beta^{2}\left(\frac{x}{\beta}\right)^{2}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \beta^{2} \int_{0}^{\infty}\left(\frac{x}{\beta}\right)^{(\alpha+2)-1} e^{-\frac{x}{\beta}} d x \\ & = \Gamma(\alpha)^{-1} \beta \Gamma(\alpha+2) \beta \int_{0}^{\infty} \Gamma(\alpha+2)^{-1} \beta^{-1}\left(\frac{x}{\beta}\right)^{(\alpha+2)-1} e^{-\frac{x}{\beta}} d x \\ & = \Gamma(\alpha)^{-1} \beta^{2}(\alpha+1) \alpha \Gamma(\alpha) \\ & = \alpha \beta^{2}(\alpha+1) \\ \end{align*}

よって分散は,

V(x)=E(x2)E(x)2=αβ2(α+1)α2β2=αβ2 \begin{align*} V(x) & =\mathbb{E}\left(x^{2}\right)-\mathbb{E}(x)^{2} \\ & =\alpha \beta^{2}(\alpha+1)-\alpha^{2} \beta^{2} \\ & =\alpha \beta^{2} \end{align*}

積率母関数

積率母関数の導出

Mx(t)=E(etX)=0etxfX(x)dx=0etxΓ(α)1β1(xβ)α1exβdx=Γ(α)1β10(xβ)α1e1βxetxdx=Γ(α)1β10(x1β1βt1βtββ)α1exp{x(1βt)}dx=Γ(α)1β10{x(1βt)(1βt)1β1}α1exp{x(1βt)}dx=Γ(α)1β1β1α(1βt)1α0{x(1βt)}α1exp{x(1βt)}dx=Γ(α)1βα(1βt)1α(1βt)1Γ(α)0(1βt)Γ(α)1{x(1βt)}α1exp{x(1βt)}dx=βα(1βt)α={β(1βt)}α=(1tβ)α \begin{align*} M_{x}(t) & =\mathbb{E}\left(e^{t X}\right) \\ & = \int_{0}^{\infty} e^{t x} f_{X}(x) d x \\ & = \int_{0}^{\infty} e^{t x} \Gamma(\alpha)^{-1} \beta^{-1}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{x}{\beta}} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \int_{0}^{\infty}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\frac{1}{\beta} x} e^{t x} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \int_{0}^{\infty}\left(x \frac{1}{\beta} \frac{\frac{1}{\beta}-t}{\frac{1}{\beta}-t} \cdot \frac{\beta}{\beta}\right)^{\alpha-1} \exp \left\{-x\left(\frac{1}{\beta}-t\right)\right\} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \int_{0}^{\infty}\left\{x\left(\frac{1}{\beta}-t\right) \cdot\left(\frac{1}{\beta}-t\right)^{-1} \beta^{-1}\right\}^{\alpha-1} \exp \left\{-x\left(\frac{1}{\beta}-t\right)\right\} d x \\ & = \Gamma(\alpha)^{-1} \beta^{-1} \beta^{1-\alpha}\left(\frac{1}{\beta}-t\right)^{1-\alpha} \int_{0}^{\infty}\left\{x\left(\frac{1}{\beta}-t\right)\right\}^{\alpha-1} \exp \left\{-x\left(\frac{1}{\beta}-t\right)\right\} d x \\ & \left.\left.=\Gamma(\alpha)^{-1} \beta^{-\alpha}\left(\frac{1}{\beta}-t\right)^{1-\alpha}\left(\frac{1}{\beta}-t\right)^{-1} \Gamma(\alpha) \int_{0}^{\infty}\left(\frac{1}{\beta}-t\right) \Gamma(\alpha)^{-1} \right\{\, x\left(\frac{1}{\beta}-t\right)\right\}^{\alpha-1} \exp \left\{-x\left(\frac{1}{\beta}-t\right)\right\} d x \\ & = \beta^{-\alpha}\left(\frac{1}{\beta}-t\right)^{-\alpha} \\ & = \left\{\beta\left(\frac{1}{\beta}-t\right)\right\}^{-\alpha} \\ & =(1-t \beta)^{-\alpha} \end{align*}

積率母関数を用いた期待値の導出

E(X)=MX(t)  t=0=ddt(1tβ)α  t=0=α(1tβ)(α+1){(1tβ)}  t=0=α(1tβ)(α+1)(β)  t=0=αβ(1tβ)(α+1)  t=0=αβ(10β)(α+1)=αβ \begin{align*} \mathbb{E}(X) &= M_X(t)' \; |_{t=0} \\ &= \frac{d}{dt}(1-t\beta)^{-\alpha} \; |_{t=0} \\ &= -\alpha (1-t\beta)^{-(\alpha+1)} \{(1-t\beta)\}' \; |_{t=0} \\ &= -\alpha (1-t\beta)^{-(\alpha+1)} (-\beta) \; |_{t=0} \\ &= \alpha\beta (1-t\beta)^{-(\alpha+1)} \; |_{t=0} \\ &= \alpha\beta (1-0\cdot\beta)^{-(\alpha+1)} \\ &= \alpha\beta \end{align*}

積率母関数を用いた分散の導出

E(X)=MX(t)  t=0={αβ(1tβ)(α+1)}  t=0=αβ(α+1)(1tβ)(α+2){(1tβ)}  t=0=αβ(α+1)(1tβ)(α+2)(β)  t=0=αβ(α+1)(1tβ)(α+2)(β)  t=0=αβ(α+1)(10β)(α+2)(β)=αβ2(α+1) \begin{align*} \mathbb{E}(X) &= M_X(t)'' \; |_{t=0} \\ &= \{ \alpha\beta (1-t\beta)^{-(\alpha+1)} \}' \; |_{t=0} \\ &= \alpha\beta(\alpha+1) (1-t\beta)^{-(\alpha+2)} \{ (1-t\beta) \}' \; |_{t=0} \\ &= -\alpha\beta(\alpha+1) (1-t\beta)^{-(\alpha+2)} (-\beta) \; |_{t=0} \\ &= -\alpha\beta(\alpha+1) (1-t\beta)^{-(\alpha+2)} (-\beta) \; |_{t=0} \\ &= -\alpha\beta(\alpha+1) (1-0\cdot \beta)^{-(\alpha+2)} (-\beta) \\ &= \alpha\beta^2(\alpha+1) \end{align*}
V(X)=E(X2)E(X)2=αβ2(α+1)(αβ)2=αβ2 \begin{align*} \mathbb{V}(X) &= \mathbb{E}(X^2)-\mathbb{E}(X)^2 \\ &= \alpha \beta^2(\alpha+1) - (\alpha \beta)^2 \\ &= \alpha\beta^2 \end{align*}

再生性

ガンマ分布は,パラメータ α\alpha について再生性が成立する.

{Xi}i={1,2,,n}, i.i.d. Gam(αi,β) \begin{align*} \left\{X_{i}\right\}_{i=\{1,2, \ldots, n\}}, \text { i.i.d. } \sim \operatorname{Gam}\left(\alpha_i, \beta \right) \end{align*}
MXi(t)=E(etXi)=E(etXi)=E(etXi)  Xis are i.i.d. =(1tβ)αi=(1tβ)αi \begin{align*} & M_{\sum X_{i}}(t)=\mathbb{E}\left(e^{t \sum X_{i}}\right) \\ & = \mathbb{E}\left(\prod e^{t X_{i}}\right) \\ & =\prod \mathbb{E}\left(e^{t X_{i}}\right) \; \because X_{i} \text {s are i.i.d. } \\ & =\prod \left(1-t \beta \right)^{-\alpha_{i}} \\ & =(1-t \beta)^{-\sum \alpha_{i}} \\ \end{align*}

以上より,

XiGamma(αi,β) \sum X_{i} \sim \operatorname{Gamma}\left(\sum \alpha_{i}, \beta\right)

ただし,パラメータ β\beta について再生性が成立しないので注意.

{Xi}i={1,2,,n}, i.i.d. Gam(α,βi) \begin{align*} \left\{X_{i}\right\}_{i=\{1,2, \ldots, n\}}, \text { i.i.d. } \sim \operatorname{Gam}\left(\alpha, \beta_{i}\right) \end{align*}
MXi(t)=E(etXi)=E(etXi)=E(etXi)  xi s are i.i.d. =(1tβi)α(1tβi)α \begin{align*} M_{\sum X_{i}}(t) & =\mathbb{E}\left(e^{t \sum X_{i}}\right) \\ & = \mathbb{E}\left(\prod e^{t X_{i}}\right) \\ & = \prod \mathbb{E}\left(e^{t X_{i}}\right) \; \because x_{i} \text { s are i.i.d. } \\ & = \prod\left(1-t \beta_{i}\right)^{-\alpha} \\ & \neq\left(1-t \sum \beta_{i}\right)^{-\alpha} \end{align*}

ガンマ分布を用いたベイズモデル (Poasson-Gamma Model)

以下の問題設定を考える.

xλPo(λ),fxλ(x)=(x!)1λxeλλGam(α,β),fλ(λ)=Γ(α)1β1(λβ)α1eλβλXFλX(λ) \begin{align*} & x \mid \lambda \sim \operatorname{Po}(\lambda), \quad f_{x \mid \lambda}(x)=(x!)^{-1} \lambda^{x} e^{-\lambda} \\ & \lambda \sim \operatorname{Gam}(\alpha, \beta), f_{\lambda}(\lambda)=\Gamma(\alpha)^{-1} \beta^{-1}\left(\frac{\lambda}{\beta}\right)^{\alpha-1} e^{-\frac{\lambda}{\beta}} \\ & \lambda \mid X \sim F_{\lambda | X}(\lambda) \end{align*}

事後分布の導出

logfλX=logfXλ(X)fλ(λ)=logfXλ+logfλ(λ)=logi=1Nfx(xi)+logfλ(λ){log(xi!)+xilogλλ}+(α1)logλβλβ{xi}logλNλ+(α1)logλ1βλ={α+(xi)1}logλNβ+1βλ \begin{align*} \log f_{\lambda|\mathbf{X}} & = \log f_{\mathbf{X} | \lambda}(\mathbf{X}) f_\lambda(\lambda) \\ & =\log f_{X \mid \lambda}+\log f_{\lambda}(\lambda) \\ & =\log \prod_{i=1}^{N} f_{x}\left(x_{i}\right)+\log f_{\lambda}(\lambda) \\ & \propto \sum\left\{-\log \left(x_{i}!\right)+x_{i} \log \lambda-\lambda\right\}+(\alpha-1) \log \frac{\lambda}{\beta}-\frac{\lambda}{\beta} \\ & \propto\left\{\sum x_{i}\right\} \log \lambda-N \lambda+(\alpha-1) \log \lambda-\frac{1}{\beta} \lambda \\ & =\left\{\alpha+\left(\sum x_{i}\right)-1\right\} \log \lambda-\frac{N \beta+1}{\beta} \lambda \end{align*}

以上より,事後分布がいかに定まる.

λXGam(α+xi,β(Nβ+1)1) \lambda \mid X \sim \operatorname{Gam}\left(\alpha+\sum x_{i}, \quad \beta(N \beta+1)^{-1}\right)

予測分布の導出

データ X\mathbf{X} を観測した後の xxの分布を考える.

XX,αβF X_{*} \mid X, \alpha^{\prime} \beta^{\prime} \sim F \\

このとき確率密度関数は,

fXk(x)=0fXλ(x)fλ(λ)dλ=0(x!)1λxeλΓ(α)1β1(λβ)α1eλβdλ=(x!)1Γ(α)1β10λxeλ(λβ)α1eλβdλ=(x!)1Γ(α)1β10exp{λ(1+1β)}βx(λβ)x(λβ)α1dλ=(x!)1Γ(α)1βx10exp{λ(1+1β)}(λ1β)α+x1dλ=(x!)1Γ(α)1βx10exp{λ(1+1β)}(λ1β1+1β1+1βββ)α+x1dλ=(x!)1Γ(α)1βx10exp{λ(1+1β)}λ(1+1β)(β+1)1}α+x1dλ=(x!)1Γ(α)1βx1(β+1)1αx0exp{λ(1+1β)}{λ(1+1β)}α+x1dλ=(x!)1Γ(α)1βx1(β+1)1αxΓ(α+x)(1+1β)10Γ(α+x)1(1+1β)exp{λ(1+1β)}{λ(1+1β)}α+x1dλ=(x!)1Γ(α)1Γ(α+x)βx1(β+1)1αx(ββ+1)=(x!)1Γ(α)1Γ(α+x)β(β+1)(α+x) \begin{align*} f_{X_{k}}\left(x_{*}\right) & = \int_{0}^{\infty} f_{X \mid \lambda}(x) f_{\lambda}(\lambda) d \lambda \\ & = \int_{0}^{\infty}(x!)^{-1} \lambda^{x} e^{-\lambda} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime-1}\left(\frac{\lambda}{\beta^{\prime}}\right)^{\alpha-1} e^{-\frac{\lambda}{\beta}} d \lambda \\ & = (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime-1} \int_{0}^{\infty} \lambda^{x} e^{-\lambda}\left(\frac{\lambda}{\beta^{\prime}}\right)^{\alpha-1} e^{-\frac{\lambda}{\beta}} d \lambda \\ & = (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime-1} \int_{0}^{\infty} \exp \left\{-\lambda \left(1+\frac{1}{\beta^{\prime}}\right) \right\} \beta^{\prime x}\left(\frac{\lambda}{\beta^{\prime}}\right)^{x}\left(\frac{\lambda}{\beta^{\prime}}\right)^{\alpha-1} d \lambda \\ & = (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime x-1} \int_{0}^{\infty} \exp \left\{-\lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\}\left(\lambda \frac{1}{\beta^{\prime}}\right)^{\alpha+x-1} d \lambda \\ = & (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime x-1} \int_{0}^{\infty} \exp \left\{-\lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\}\left(\lambda \frac{1}{\beta^{\prime}} \frac{1+\frac{1}{\beta^{\prime}}}{1+\frac{1}{\beta^{\prime}}} \cdot \frac{\beta^{\prime}}{\beta^{\prime}}\right)^{\alpha+x-1} d \lambda \\ = & \left.(x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime x-1} \int_{0}^{\infty} \exp \left\{-\lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\} \lambda\left(1+\frac{1}{\beta^{\prime}}\right)\left(\beta^{\prime}+1\right)^{-1}\right\}^{\alpha+x-1} d \lambda \\ = & (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime x-1}\left(\beta^{\prime}+1\right)^{1-\alpha-x} \int_{0}^{\infty} \exp \left\{-\lambda\left(1+\frac{1}{\beta}\right)\right\}\left\{\lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\}^{\alpha+x-1} d \lambda \\ = & (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \beta^{\prime x-1}\left(\beta^{\prime}+1\right)^{1-\alpha-x} \Gamma\left(\alpha^{\prime}+x\right)\left(1+\frac{1}{\beta^{\prime}}\right)^{-1} \\ & \left.\left.\int_{0}^{\infty} \Gamma\left(\alpha^{\prime}+x\right)^{-1}\left(1+\frac{1}{\beta^{\prime}}\right) \exp \left\{-\lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\} \right\{\, \lambda\left(1+\frac{1}{\beta^{\prime}}\right)\right\}^{\alpha+x-1} d \lambda \\ = & (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \Gamma\left(\alpha^{\prime}+x\right) \beta^{\prime} x-1\left(\beta^{\prime}+1\right)^{1-\alpha-x}\left(\frac{\beta^{\prime}}{\beta^{\prime}+1}\right) \\ = & (x!)^{-1} \Gamma\left(\alpha^{\prime}\right)^{-1} \Gamma\left(\alpha^{\prime}+x\right) \beta^{\prime}\left(\beta^{\prime}+1\right)^{-(\alpha+x)} \end{align*}

この分布をPoisson-Gamma分布という.負の二項分布に対応していることに注意する.最後にこの分布の期待値と分散を求める.

E(X)=Eλ[EXλ(Xλ)]=Eλ[λ]=αβE(X2)=Eλ[EXλ(X2λ)]=Eλ[λ2+λ]=Ex[λ2]+Eλ[λ]=αβ2(1+α)+αβV(X2)=αβ2(1+α)+αβα2β2=αβ2+αβ=αβ2(1+β) \begin{align*} \mathbb{E}\left(X_{*}\right) & =\mathbb{E}_{\lambda}\left[\mathbb{E}_{X_{*} \mid \lambda}\left(X_{*} \mid \lambda\right)\right] \\ & =\mathbb{E}_{\lambda}[\lambda] \\ & =\alpha \beta \\ \mathbb{E}\left(X_{*}{ }^{2}\right) & =\mathbb{E}_{\lambda}\left[\mathbb{E}_{X_{*} \mid \lambda}\left(X_{*}{ }^{2} \mid \lambda\right)\right] \\ & =\mathbb{E}_{\lambda}\left[\lambda^{2}+\lambda\right] \\ & =\mathbb{E}_{x}\left[\lambda^{2}\right]+\mathbb{E}_{\lambda}[\lambda] \\ & =\alpha \beta^{2}(1+\alpha)+\alpha \beta \\ V\left(X_{*}{ }^{2}\right) & =\alpha \beta^{2}(1+\alpha)+\alpha \beta-\alpha^{2} \beta^{2} \\ & =\alpha \beta^{2}+\alpha \beta \\ & =\alpha \beta^{2}(1+\beta) \end{align*}

参考文献

(1) 竹村彰通.”新装改訂版 現代数理統計学”.2020.学術図書出版社

(2) 久保川."現代数理統計学の基礎".2017.共立出版

(3) C.M.ビショップ.”パターン認識と機械学習 上 ベイズ理論による統計的予測”.2019.丸善出版

(4) 須山敦志.”機械学習スタートアップシリーズ ベイズ推論による機械学習入門”.2018.講談社サイエンティフィク

更新

2024.08.14: 構成を一部変更,再生性,ベイズモデルの章を追加

Discussion

ログインするとコメントできます