Open4
cell-phone
- Normal dataset
score threshold >= 0.65
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-n_original.yaml \
--weights best-n.pt \
--name yolov9-cellphone-n \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 200 \
--close-mosaic 15
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-n_original.yaml \
--weights best-n-phone.pt \
--name yolov9-cellphone-n \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
##################
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights yolov9-t-converted.pt \
--name yolov9-cellphone-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights best-t-phone.pt \
--name yolov9-cellphone-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
##################
python train_dual.py \
--workers 8 \
--device 0 \
--batch 8 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-s_original.yaml \
--weights yolov9-s-converted.pt \
--name yolov9-cellphone-s \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-s_original.yaml \
--weights best-s-phone.pt \
--name yolov9-cellphone-s \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
##################
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights yolov9-e-converted.pt \
--name yolov9-cellphone-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e-phone.pt \
--name yolov9-cellphone-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
- N - No-dist
Class Images Instances P R mAP50 mAP50-95
all 1004 1245 0.647 0.471 0.521 0.329
- T - No-dist
Class Images Instances P R mAP50 mAP50-95
all 1004 1245 0.742 0.547 0.615 0.412
- S - No-dist
Class Images Instances P R mAP50 mAP50-95
all 1004 1245 0.779 0.618 0.686 0.478
- distorted dataset
- N - Dist
Class Images Instances P R mAP50 mAP50-95
all 2007 2676 0.706 0.517 0.582 0.389
- T - Dist
Class Images Instances P R mAP50 mAP50-95
all 2007 2676 0.792 0.647 0.711 0.505
- S - Dist
Class Images Instances P R mAP50 mAP50-95
all 2007 2676 0.885 0.704 0.792 0.590
- E - Dist - First
Class Images Instances P R mAP50 mAP50-95
all 2007 2676 0.896 0.732 0.805 0.612