Open18

関節アノテーション 肩・肘・膝

PINTOPINTO
  • 000000003786.jpg - 169

  • 000000005673.jpg - 254

  • 000000006763.jpg - 306

  • 000000009420.jpg - 419

  • 000000010082.jpg - 452

  • 000000010104.jpg - 453

  • 000000013455.jpg - 620

  • 000000015778.jpg - 744

  • 000000016905.jpg - 801

  • 000000017899.jpg - 841

  • 000000018150.jpg - 849

  • 000000023982.jpg - 1159

  • 000000036046.jpg - 1731

  • 000000045923.jpg - 2186

  • 000000047519.jpg - 2256

  • 000000048658.jpg - 2323

  • 000000050507.jpg - 2413

  • 000000053672.jpg - 2584

  • 000000056616.jpg - 2742

  • 000000056676.jpg - 2746

  • 000000060828.jpg - 2925

  • 000000061585.jpg - 2963

  • 000000061606.jpg - 2966

  • 000000062068.jpg - 2994

  • 000000064744.jpg - 3130

  • 000000064824.jpg - 3136

  • 000000065500.jpg - 3163

  • 000000066754.jpg - 3223

  • 000000069081.jpg - 3329

  • 000000070744.jpg - 3392

  • 000000073470.jpg - 3534

  • 000000074421.jpg - 3594

  • 000000077185.jpg - 3720

  • 000000077997.jpg - 3749

  • 000000086516.jpg - 4124

  • 000000086526.jpg - 4125

  • 000000087681.jpg - 4186

  • 000000087933.jpg - 4194

  • 000000088214.jpg - 4207

  • 000000088754.jpg - 4226

  • 000000094388.jpg - 4511

PINTOPINTO
python train_dual.py \
--workers 8 \
--device 0 \
--batch 16 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights best-t.pt \
--name yolov9-shoulder-elbow-knee-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
  • 3x3ピクセル, 727枚, T, 肩肘膝3クラスのみ
   Class     Images  Instances          P          R      mAP50   mAP50-95
     all        146       2868     0.0908     0.0316     0.0171    0.00537
shoulder        146       1296      0.117     0.0563     0.0259    0.00716
   elbow        146        877     0.0988     0.0182     0.0139    0.00492
    knee        146        695     0.0569     0.0201     0.0114    0.00402
PINTOPINTO

names:
  0: body
  1: adult
  2: child
  3: male
  4: female
  5: body_with_wheelchair
  6: body_with_crutches
  7: head
  8: front
  9: right-front
  10: right-side
  11: right-back
  12: back
  13: left-back
  14: left-side
  15: left-front
  16: face
  17: eye
  18: nose
  19: mouth
  20: ear
  21: hand
  22: hand_left
  23: hand_right
  24: foot
  25: shoulder
  26: elbow
  27: knee
PINTOPINTO
python train_dual.py \
--workers 8 \
--device 0 \
--batch 2 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights best-t.pt \
--name yolov9-shoulder-elbow-knee-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
  • 3x3ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714       0.54        0.4      0.412      0.275
       body        146       1156      0.683       0.64      0.676      0.492
      adult        146        761      0.762      0.692      0.723      0.551
      child        146         80      0.331       0.35      0.375      0.307
       male        146        512      0.638       0.68      0.661      0.512
     female        146        247      0.515      0.615      0.557      0.449
       head        146        847      0.734      0.791      0.827       0.56
      front        146        138       0.47      0.413       0.42      0.332
right-front        146        190      0.505      0.305      0.325      0.263
 right-side        146        128      0.459      0.328       0.33      0.261
 right-back        146         66      0.453      0.301      0.306      0.238
       back        146         66      0.223      0.212      0.125     0.0932
  left-back        146         36      0.176      0.167      0.154      0.115
  left-side        146         83      0.467      0.337      0.308      0.226
 left-front        146        140      0.472       0.28       0.26      0.214
       face        146        396      0.827      0.712      0.757      0.536
        eye        146        374      0.698      0.265      0.323      0.111
       nose        146        335      0.692      0.427      0.464      0.205
      mouth        146        278      0.557      0.342       0.33       0.13
        ear        146        320      0.679      0.403      0.462      0.234
       hand        146        579      0.837      0.615      0.705      0.408
  hand_left        146        291      0.693      0.536      0.594      0.344
 hand_right        146        288      0.591      0.465      0.504      0.306
       foot        146        535      0.568      0.521      0.526      0.274
   shoulder        146       1296          1          0          0          0
      elbow        146        877          0          0          0          0
       knee        146        695          0          0          0          0
  • 6x6ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.519      0.393      0.417       0.28
       body        146       1156      0.655      0.639      0.663      0.479
      adult        146        761      0.809      0.628      0.693      0.537
      child        146         80      0.295      0.388      0.357      0.304
       male        146        512      0.619      0.664      0.661      0.518
     female        146        247      0.575      0.597      0.602      0.485
       head        146        847      0.779      0.797      0.834      0.564
      front        146        138      0.454      0.435      0.435      0.348
right-front        146        190      0.503      0.311      0.345      0.277
 right-side        146        128       0.47       0.32       0.34      0.263
 right-back        146         66      0.433      0.273      0.306       0.24
       back        146         66      0.272      0.203      0.132     0.0964
  left-back        146         36        0.3      0.194      0.193      0.148
  left-side        146         83      0.528      0.313      0.306       0.23
 left-front        146        140      0.463      0.277      0.282      0.225
       face        146        396       0.83      0.712      0.763      0.549
        eye        146        374      0.578      0.238      0.287      0.101
       nose        146        335      0.684      0.418      0.472      0.207
      mouth        146        278      0.628      0.324      0.362      0.141
        ear        146        320      0.697      0.394      0.445      0.216
       hand        146        579      0.855      0.589      0.694      0.408
  hand_left        146        291      0.676       0.54       0.59      0.339
 hand_right        146        288      0.602      0.435      0.504      0.309
       foot        146        535      0.568      0.518      0.524      0.288
   shoulder        146       1296      0.216     0.0201     0.0261    0.00512
      elbow        146        877          0          0    0.00907    0.00182
       knee        146        695          0          0     0.0148    0.00274
  • 9x9ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.519      0.409      0.422      0.283
       body        146       1156      0.689       0.63      0.675      0.493
      adult        146        761      0.783      0.619      0.675      0.533
      child        146         80      0.375      0.412      0.386      0.349
       male        146        512      0.624      0.635      0.626      0.504
     female        146        247       0.54      0.652      0.593      0.479
       head        146        847       0.72      0.804      0.835      0.571
      front        146        138      0.483      0.449      0.429      0.338
right-front        146        190      0.503      0.295      0.357      0.285
 right-side        146        128      0.434       0.32      0.342      0.264
 right-back        146         66      0.429      0.284      0.304      0.239
       back        146         66      0.303      0.227      0.155      0.114
  left-back        146         36      0.243      0.222      0.165      0.126
  left-side        146         83      0.435      0.361      0.308      0.234
 left-front        146        140      0.451      0.258      0.279      0.232
       face        146        396      0.794      0.725      0.781      0.551
        eye        146        374      0.568      0.246      0.296      0.106
       nose        146        335      0.678      0.442       0.49      0.217
      mouth        146        278      0.529      0.295      0.317      0.136
        ear        146        320      0.616      0.391      0.455      0.222
       hand        146        579      0.814      0.606      0.686      0.398
  hand_left        146        291      0.634      0.546      0.569      0.326
 hand_right        146        288      0.574      0.458       0.49      0.296
       foot        146        535      0.523      0.525      0.528      0.288
   shoulder        146       1296      0.356      0.143      0.141     0.0382
      elbow        146        877      0.199     0.0342     0.0462      0.012
       knee        146        695      0.203     0.0417     0.0539     0.0138
  • 12x12ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.553       0.41      0.435      0.287
       body        146       1156      0.757      0.619      0.687        0.5
      adult        146        761      0.795      0.591      0.652      0.516
      child        146         80      0.404       0.35      0.351      0.291
       male        146        512      0.663      0.645      0.656      0.513
     female        146        247      0.524      0.591      0.553      0.451
       head        146        847      0.752      0.786       0.83      0.573
      front        146        138      0.524      0.435      0.434       0.35
right-front        146        190      0.613      0.284      0.364      0.295
 right-side        146        128       0.45      0.328      0.345       0.27
 right-back        146         66      0.459      0.273      0.313      0.246
       back        146         66      0.269      0.197      0.136      0.101
  left-back        146         36       0.26       0.25      0.214       0.16
  left-side        146         83      0.457      0.337      0.325      0.253
 left-front        146        140      0.423      0.279      0.277      0.231
       face        146        396      0.835      0.691      0.761      0.556
        eye        146        374      0.563      0.251      0.302      0.111
       nose        146        335      0.699      0.416      0.488      0.216
      mouth        146        278      0.553      0.324      0.339      0.136
        ear        146        320      0.721      0.409      0.471      0.226
       hand        146        579      0.834      0.604      0.695      0.401
  hand_left        146        291      0.665      0.525      0.585      0.331
 hand_right        146        288      0.591      0.476       0.52      0.316
       foot        146        535      0.546      0.525      0.536      0.289
   shoulder        146       1296      0.412      0.292      0.259     0.0787
      elbow        146        877      0.307     0.0889     0.0984     0.0267
       knee        146        695      0.312      0.104      0.117      0.033
  • 15x15ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714       0.55      0.411      0.438      0.289
       body        146       1156      0.781      0.563      0.653      0.485
      adult        146        761      0.793      0.567      0.658      0.527
      child        146         80      0.444      0.388      0.395      0.351
       male        146        512      0.667      0.623      0.649      0.514
     female        146        247      0.537      0.573      0.564      0.466
       head        146        847      0.768       0.79      0.838      0.568
      front        146        138       0.51      0.435      0.433      0.351
right-front        146        190      0.508        0.3      0.365      0.293
 right-side        146        128      0.455      0.293      0.353      0.275
 right-back        146         66      0.378      0.242      0.283      0.226
       back        146         66      0.258      0.158      0.158      0.113
  left-back        146         36      0.226      0.195      0.141      0.107
  left-side        146         83      0.471      0.301      0.311      0.235
 left-front        146        140      0.488      0.279      0.286      0.234
       face        146        396      0.798      0.705       0.77      0.559
        eye        146        374      0.604      0.241      0.309       0.11
       nose        146        335      0.699      0.415      0.488      0.218
      mouth        146        278      0.572      0.342      0.364       0.15
        ear        146        320      0.661      0.378      0.442      0.217
       hand        146        579      0.824      0.582       0.67      0.392
  hand_left        146        291      0.672      0.508      0.562      0.322
 hand_right        146        288      0.575      0.441      0.492      0.297
       foot        146        535      0.582       0.54      0.539      0.296
   shoulder        146       1296      0.349      0.393      0.297     0.0949
      elbow        146        877      0.319      0.195      0.161     0.0493
       knee        146        695      0.369      0.245      0.207     0.0635

  • 18x18ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.556      0.416      0.438      0.288
       body        146       1156      0.829      0.542      0.654      0.484
      adult        146        761      0.776      0.564      0.655      0.515
      child        146         80      0.396       0.35      0.377      0.316
       male        146        512      0.656      0.586      0.623       0.49
     female        146        247      0.512      0.567      0.537      0.428
       head        146        847      0.789      0.777      0.831      0.576
      front        146        138      0.497      0.442      0.446      0.362
right-front        146        190      0.534      0.311       0.36      0.289
 right-side        146        128      0.465      0.305      0.344      0.278
 right-back        146         66      0.418      0.258      0.304      0.239
       back        146         66      0.279      0.199      0.154      0.104
  left-back        146         36      0.214      0.194      0.123     0.0856
  left-side        146         83      0.518      0.313      0.326       0.25
 left-front        146        140      0.446      0.264       0.28      0.229
       face        146        396      0.804      0.693      0.759      0.549
        eye        146        374      0.576      0.247      0.299       0.11
       nose        146        335      0.677        0.4      0.468      0.214
      mouth        146        278      0.594      0.331      0.364      0.147
        ear        146        320      0.666      0.356      0.433      0.211
       hand        146        579      0.839      0.579      0.667      0.396
  hand_left        146        291      0.663      0.488      0.557      0.332
 hand_right        146        288      0.602      0.435      0.506      0.317
       foot        146        535      0.595      0.525      0.525      0.285
   shoulder        146       1296      0.373      0.485      0.302      0.103
      elbow        146        877      0.358      0.259      0.206     0.0691
       knee        146        695      0.371       0.34      0.281     0.0971

  • 21x21ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.578       0.41      0.448      0.292
       body        146       1156      0.885      0.525      0.652      0.487
      adult        146        761      0.825      0.532      0.644      0.515
      child        146         80      0.407        0.4      0.353      0.301
       male        146        512      0.679      0.578      0.628      0.503
     female        146        247      0.587      0.494      0.544      0.451
       head        146        847       0.84      0.764      0.826      0.569
      front        146        138      0.493      0.435      0.451      0.362
right-front        146        190      0.538        0.3      0.368        0.3
 right-side        146        128      0.535      0.297      0.361      0.278
 right-back        146         66      0.458      0.258      0.296      0.232
       back        146         66      0.255      0.167      0.136     0.0994
  left-back        146         36      0.176      0.167      0.126     0.0878
  left-side        146         83      0.487      0.301      0.338      0.247
 left-front        146        140      0.474       0.25       0.28       0.23
       face        146        396      0.849      0.694      0.768      0.557
        eye        146        374       0.59      0.227      0.295      0.106
       nose        146        335      0.672      0.391      0.462      0.204
      mouth        146        278      0.617      0.336      0.374      0.148
        ear        146        320       0.72      0.362      0.458      0.229
       hand        146        579      0.869      0.563      0.673      0.398
  hand_left        146        291        0.7      0.465       0.56      0.325
 hand_right        146        288      0.603      0.417      0.483      0.296
       foot        146        535      0.597      0.516      0.534      0.289
   shoulder        146       1296      0.416      0.556      0.434      0.164
      elbow        146        877       0.38      0.301      0.256      0.095
       knee        146        695      0.391      0.377      0.337      0.129

  • 30x30ピクセル, 727枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        146      10714      0.572      0.414      0.453      0.294
       body        146       1156      0.846       0.51      0.635      0.476
      adult        146        761      0.796      0.499      0.615      0.496
      child        146         80      0.378      0.375      0.361      0.314
       male        146        512      0.652      0.564      0.611      0.494
     female        146        247      0.533      0.543      0.552      0.444
       head        146        847       0.84      0.751      0.816      0.561
      front        146        138      0.472      0.428      0.444      0.361
right-front        146        190      0.546      0.274      0.348      0.281
 right-side        146        128       0.45      0.289      0.347      0.273
 right-back        146         66       0.42      0.258      0.291      0.226
       back        146         66      0.307      0.136      0.142      0.117
  left-back        146         36      0.279      0.167      0.173      0.136
  left-side        146         83      0.473      0.289      0.302      0.222
 left-front        146        140      0.392      0.243      0.257      0.214
       face        146        396      0.812      0.679      0.756      0.558
        eye        146        374      0.572      0.232      0.294      0.105
       nose        146        335      0.645      0.409      0.465      0.212
      mouth        146        278      0.616      0.299      0.355      0.141
        ear        146        320      0.733      0.366      0.435      0.217
       hand        146        579      0.877      0.546      0.668       0.39
  hand_left        146        291      0.701       0.43      0.555      0.322
 hand_right        146        288      0.604      0.441      0.485      0.295
       foot        146        535      0.648      0.492      0.517      0.282
   shoulder        146       1296       0.45      0.658      0.569      0.219
      elbow        146        877      0.392      0.395      0.342      0.125
       knee        146        695      0.427      0.499      0.437      0.162

PINTOPINTO

データ調整後

python train_dual.py \
--workers 8 \
--device 0 \
--batch 2 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights best-t-sek.pt \
--name yolov9-shoulder-elbow-knee-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
  • 700枚, T, 28クラス
      Class     Images  Instances          P          R      mAP50   mAP50-95
        all        273      18058      0.602      0.462      0.495      0.338
       body        273       1628      0.823      0.698      0.782      0.605
      adult        273       1333      0.819      0.626      0.727       0.61
      child        273        139      0.494      0.489      0.492      0.414
       male        273        860      0.745      0.699      0.759      0.647
     female        273        353      0.587       0.62      0.638      0.539
       head        273       1394      0.846      0.829      0.871      0.606
      front        273        246      0.492      0.512      0.504      0.397
right-front        273        322      0.573      0.404      0.443      0.353
 right-side        273        181      0.626      0.459      0.506      0.398
 right-back        273         72      0.425      0.431      0.427      0.335
       back        273         87      0.319      0.299      0.212      0.159
  left-back        273         73      0.321       0.31      0.305      0.222
  left-side        273        169      0.632      0.426      0.443      0.341
 left-front        273        244      0.452      0.299      0.321      0.249
       face        273        776      0.851      0.785      0.834      0.556
        eye        273        700      0.577      0.216       0.27     0.0923
       nose        273        637      0.719      0.385      0.445      0.202
      mouth        273        524      0.591        0.3      0.333      0.129
        ear        273        590       0.68      0.378      0.425      0.216
       hand        273       1046      0.847      0.597      0.699      0.424
  hand_left        273        525      0.685      0.507      0.595      0.381
 hand_right        273        521      0.679      0.491      0.565      0.343
       foot        273        885      0.637      0.593      0.619      0.345
   shoulder        273       2200      0.446       0.29      0.272     0.0943
      elbow        273       1433      0.389      0.158      0.164     0.0565
       knee        273       1120      0.387      0.213      0.212     0.0797
PINTOPINTO
  • 837枚, E, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e.pt \
--name yolov9-shoulder-elbow-knee-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 200 \
--close-mosaic 15
   Class     Images  Instances          P          R      mAP50   mAP50-95
     all        327       5679       0.82      0.579      0.674      0.382
shoulder        327       2524       0.83      0.597      0.696      0.386
   elbow        327       1742      0.802      0.549      0.636      0.361
    knee        327       1413      0.829      0.592       0.69      0.398
PINTOPINTO
  • 1,000枚, E, 3クラス

python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e-sek.pt \
--name yolov9-shoulder-elbow-knee-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15
python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-e/weights/last.pt \
--name yolov9_e_640_val

   Class     Images  Instances          P          R      mAP50   mAP50-95
     all        391       7908       0.88      0.624      0.729      0.451
shoulder        391       3748      0.881      0.603      0.726      0.441
   elbow        391       2330      0.866      0.602      0.697      0.434
    knee        391       1830      0.892      0.665      0.764      0.479
  • 1,300枚, E, 3クラス

   Class     Images  Instances          P          R      mAP50   mAP50-95
     all        818      16035      0.909       0.69      0.788      0.572
shoulder        818       7641      0.906      0.659      0.774      0.553
   elbow        818       4694      0.902      0.663      0.759      0.540
    knee        818       3700       0.92      0.747      0.833      0.623
PINTOPINTO
  • 4,000枚, E, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e-sek.pt \
--name yolov9-shoulder-elbow-knee-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 150 \
--close-mosaic 15 \
--patience 0

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-e/weights/last.pt \
--name yolov9_e_640_val

   Class     Images  Instances          P          R      mAP50   mAP50-95
     all       1569      31209      0.865      0.637      0.730      0.458
shoulder       1569      15007      0.870      0.647      0.744      0.458
   elbow       1569       8988      0.854      0.602      0.694      0.428
    knee       1569       7214      0.873      0.660      0.751      0.487
  • 4,300枚, E, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e-sek.pt \
--name yolov9-shoulder-elbow-knee-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 100 \
--close-mosaic 15

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-e/weights/last.pt \
--name yolov9_e_640_val

   Class     Images  Instances          P          R      mAP50   mAP50-95
     all       1686      32138      0.869      0.644      0.741      0.471
shoulder       1686      15265      0.875      0.659      0.758      0.475
   elbow       1686       9333      0.858      0.606      0.706      0.439
    knee       1686       7540      0.873      0.668      0.760      0.498
PINTOPINTO

  • 4,532枚, T, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-t_original.yaml \
--weights best-t-sek.pt \
--name yolov9-shoulder-elbow-knee-t \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 150 \
--close-mosaic 15 \
--patience 0

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-t/weights/last.pt \
--name yolov9_t_640_val
   Class     Images  Instances          P          R      mAP50   mAP50-95
     all       1777      34445      0.603      0.359      0.400      0.158
shoulder       1777      16405      0.631      0.410      0.442      0.164
   elbow       1777      10012      0.590      0.313      0.357      0.141
    knee       1777       8028      0.588      0.355      0.400      0.167
  • 4,532枚, S, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-s_original.yaml \
--weights best-s.pt \
--name yolov9-shoulder-elbow-knee-s \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 150 \
--close-mosaic 15 \
--patience 0

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-s/weights/last.pt \
--name yolov9_t_640_val
   Class     Images  Instances          P          R      mAP50   mAP50-95
     all       1777      34445      0.694      0.434      0.493      0.214
shoulder       1777      16405      0.730      0.480      0.538      0.226
   elbow       1777      10012      0.671      0.387      0.445      0.191
    knee       1777       8028      0.680      0.433      0.495      0.226
  • 4,532枚, C, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-c_original.yaml \
--weights best-c.pt \
--name yolov9-shoulder-elbow-knee-c \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 150 \
--close-mosaic 15 \
--patience 0

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-c/weights/last.pt \
--name yolov9_t_640_val
  • 4,532枚, E, 3クラス
python train_dual.py \
--workers 8 \
--device 0 \
--batch 4 \
--data data/original.yaml \
--img 640 \
--cfg models/detect/yolov9-e_original.yaml \
--weights best-e-sek.pt \
--name yolov9-shoulder-elbow-knee-e \
--hyp hyp.scratch-high_original.yaml \
--min-items 0 \
--epochs 150 \
--close-mosaic 15 \
--patience 0

python val_dual.py \
--data data/original.yaml \
--img 640 \
--batch 8 \
--conf 0.001 \
--iou 0.7 \
--device 0 \
--weights runs/train/yolov9-shoulder-elbow-knee-e/weights/last.pt \
--name yolov9_e_640_val
   Class     Images  Instances          P          R      mAP50   mAP50-95
     all       1777      34445      0.880      0.648      0.747      0.478
shoulder       1777      16405      0.882      0.658      0.759      0.485
   elbow       1777      10012      0.877      0.619      0.719      0.449
    knee       1777       8028      0.881      0.668      0.763      0.501