📖

Gemma 3 270Mのファインチューニング

に公開

初めに

GoogleからGemma 3 270Mが出ましたので、試してみました。
unsolothaiからファインチューニングのnotebookが公開されています。

これを参考にlivedoor ニュースコーパスのテキスト分類を試してみます。
accuracy = 95%でよいですね!


インストール

%%capture
import os, re
if "COLAB_" not in "".join(os.environ.keys()):
    !pip install unsloth
else:
    # Do this only in Colab notebooks! Otherwise use pip install unsloth
    import torch; v = re.match(r"[0-9\.]{3,}", str(torch.__version__)).group(0)
    xformers = "xformers==" + ("0.0.32.post2" if v == "2.8.0" else "0.0.29.post3")
    !pip install --no-deps bitsandbytes accelerate {xformers} peft trl triton cut_cross_entropy unsloth_zoo
    !pip install sentencepiece protobuf "datasets>=3.4.1,<4.0.0" "huggingface_hub>=0.34.0" hf_transfer
    !pip install --no-deps unsloth
!pip install transformers==4.55.4
!pip install --no-deps trl==0.22.2

Unsloth

ベースモデル作成

from unsloth import FastModel
import torch
max_seq_length = 2048

model, tokenizer = FastModel.from_pretrained(
    model_name = "unsloth/gemma-3-270m-it",
    max_seq_length = max_seq_length, # Choose any for long context!
    load_in_4bit = False,  # 4 bit quantization to reduce memory
    load_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memory
    full_finetuning = False, # [NEW!] We have full finetuning now!
    # token = "hf_...", # use one if using gated models
)

LoRAアダプターを追加

model = FastModel.get_peft_model(
    model,
    r = 128, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 128,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)

データ準備

トークナイザー作成

from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
    tokenizer,
    chat_template = "gemma3",
)

livedoor ニュースコーパスを取得

%%capture
!wget https://www.rondhuit.com/download/ldcc-20140209.tar.gz
!tar xvf ldcc-20140209.tar.gz

ジャンル別に読み込む

import os
import glob

livedoor_news = {}
for folder in glob.glob("text/*"):
  if os.path.isdir(folder):
    texts = []
    for txt in glob.glob(os.path.join(folder, "*.txt")):
      text = []
      with open(txt, "r") as f:
        lines = f.readlines()
        texts.append('\n'.join([line.strip() for line in lines[3:]]))

    label = os.path.basename(folder)
    livedoor_news[label] = texts

訓練データセットとテストデータセットを作成

def convert_to_chatml(example):
    return {
        "conversations": [
            {"role": "system", "content": example["task"]},
            {"role": "user", "content": example["input"]},
            {"role": "assistant", "content": example["expected_output"]}
        ]
    }

from datasets import Dataset, concatenate_datasets

train_dataset = None
test_dataset = None

TASK = "次の文章のジャンルを分類してください。ジャンルは'peachy', 'sports-watch', 'movie-enter', 'smax', 'livedoor-homme', 'it-life-hack', 'topic-news', 'dokujo-tsushin', 'kaden-channel'から選択してください"
for label, texts in livedoor_news.items():
  data = []
  for text in texts:
    data.append({"task": TASK,"input": text, "expected_output": label})
  dataset = Dataset.from_list(data)
  tmp_train = dataset.train_test_split(test_size=0.25, shuffle=True, seed=0)
  if train_dataset is None:
    train_dataset = tmp_train["train"]
    test_dataset = tmp_train["test"]
  else:
    train_dataset = concatenate_datasets([train_dataset, tmp_train["train"]])
    test_dataset = concatenate_datasets([test_dataset, tmp_train["test"]])

dataset = train_dataset.map(convert_to_chatml).shuffle(seed=0)
test_dataset = test_dataset.map(convert_to_chatml)

Gemma3向けのフォーマットに変換

def formatting_prompts_func(examples):
   convos = examples["conversations"]
   texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]
   return { "text" : texts, }

dataset = dataset.map(formatting_prompts_func, batched = True)
test_dataset = test_dataset.map(formatting_prompts_func, batched = True)

学習

学習パラメーターを設定

from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    eval_dataset = None, # Can set up evaluation!
    args = SFTConfig(
        dataset_text_field = "text",
        per_device_train_batch_size = 8,
        gradient_accumulation_steps = 1, # Use GA to mimic batch size!
        warmup_steps = 5,
        num_train_epochs = 1, # Set this for 1 full training run.
        #max_steps = 100,
        learning_rate = 5e-5, # Reduce to 2e-5 for long training runs
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir="outputs",
        report_to = "none", # Use this for WandB etc
    ),
)

アシスタントの出力のみを訓練対象に設定

from unsloth.chat_templates import train_on_responses_only
trainer = train_on_responses_only(
    trainer,
    instruction_part = "<start_of_turn>user\n",
    response_part = "<start_of_turn>model\n",
)

学習実施

trainer_stats = trainer.train()

保存&読込

モデル保存

model.save_pretrained("gemma-3")  # Local saving
tokenizer.save_pretrained("gemma-3")

モデル読込

from unsloth import FastLanguageModel
max_seq_length = 2048

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/gemma-3-270m-it", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = max_seq_length,
    load_in_4bit = False,
    load_in_8bit = False,
)
model.load_adapter("gemma-3")

推論

from transformers import TextStreamer

def predict(example):
  messages = [
    {'role': 'system','content':example[0]['content']},
    {"role" : 'user', 'content' : example[1]['content']}
  ]
  text = tokenizer.apply_chat_template(
    messages,
    tokenize = False,
    add_generation_prompt = True, # Must add for generation
  ).removeprefix('<bos>')

  res = model.generate(
      **tokenizer(text, return_tensors = "pt").to("cuda"),
      max_new_tokens = 125,
      temperature = 0.01, top_p = 0.95, top_k = 64,
      #streamer = TextStreamer(tokenizer, skip_prompt = True),
  )
  res = tokenizer.decode([tokenizer.pad_token_id if x == -100 else x for x in res[0]]).replace(tokenizer.pad_token, " ")
  return res[res.rfind('model')+6:-13]

with open('predict.txt', 'w') as f:
  for i, example in enumerate(test_dataset['conversations']):
    t = example[2]['content']
    p = predict(example)
    f.write(f"{t},{p}\n")

集計

import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt

results = pd.read_csv('predict.txt', header=None)

figure, ax1 = plt.subplots()

SVM_confusion_df = pd.crosstab(results[0], results[1], rownames=['Actual'], colnames=['Predicted'], normalize='index')
sn.heatmap(SVM_confusion_df, annot=True, cmap="YlGnBu", ax=ax1, cbar=False)

from sklearn.metrics import classification_report

target_names = results[0].unique().tolist()
report = classification_report(y_pred=results[1], y_true=results[0], target_names=target_names, output_dict=True)
pd.DataFrame(report).T

Discussion