Julia Advent Calendar 2024 シリーズ2 の9日目です🎄
https://qiita.com/advent-calendar/2024/julia
はじめに
FiniteDifferenceMatrices.jl と LaTeXStrings.jl を用いて中心差分と前進差分, 4次精度までの1階微分から4階微分に対応する 有限差分 (Finite Difference) を列挙し, それらを手で証明していきます.
有限差分の列挙
FiniteDifferenceMatrices.jl の fdcoefficient()で求めた係数を使い, LaTeXStrings.jl でうまく数式が表示されるようLaTeXにコンパイルできる文字列を生成します. コードはこちらにあります.
https://gist.github.com/ohno/bd52eb6461aaaeb5c2c3dec78017f33f
中心差分
2次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
f(x + \Delta x)
- f(x - \Delta x)
}{{2\Delta x}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
f(x + \Delta x)
- 2 f(x )
+ f(x - \Delta x)
}{{\Delta x}^{2}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
f(x + 2 \Delta x)
- 2 f(x + \Delta x)
+ 2 f(x - \Delta x)
- f(x - 2 \Delta x)
}{{2\Delta x}^{3}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
f(x + 2 \Delta x)
- 4 f(x + \Delta x)
+ 6 f(x )
- 4 f(x - \Delta x)
+ f(x - 2 \Delta x)
}{{\Delta x}^{4}}
+ O(\Delta x^{2})
4次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
- f(x + 2 \Delta x)
+ 8 f(x + \Delta x)
- 8 f(x - \Delta x)
+ f(x - 2 \Delta x)
}{{12\Delta x}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
- f(x + 2 \Delta x)
+ 16 f(x + \Delta x)
- 30 f(x )
+ 16 f(x - \Delta x)
- f(x - 2 \Delta x)
}{{12\Delta x}^{2}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
- f(x + 3 \Delta x)
+ 8 f(x + 2 \Delta x)
- 13 f(x + \Delta x)
+ 13 f(x - \Delta x)
- 8 f(x - 2 \Delta x)
+ f(x - 3 \Delta x)
}{{8\Delta x}^{3}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
- f(x + 3 \Delta x)
+ 12 f(x + 2 \Delta x)
- 39 f(x + \Delta x)
+ 56 f(x )
- 39 f(x - \Delta x)
+ 12 f(x - 2 \Delta x)
- f(x - 3 \Delta x)
}{{6\Delta x}^{4}}
+ O(\Delta x^{4})
前進差分
1次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
f(x + \Delta x)
- f(x )
}{{\Delta x}}
+ O(\Delta x)
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
f(x + 2 \Delta x)
- 2 f(x + \Delta x)
+ f(x )
}{{\Delta x}^{2}}
+ O(\Delta x)
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
f(x + 3 \Delta x)
- 3 f(x + 2 \Delta x)
+ 3 f(x + \Delta x)
- f(x )
}{{\Delta x}^{3}}
+ O(\Delta x)
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
f(x + 4 \Delta x)
- 4 f(x + 3 \Delta x)
+ 6 f(x + 2 \Delta x)
- 4 f(x + \Delta x)
+ f(x )
}{{\Delta x}^{4}}
+ O(\Delta x)
2次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
- f(x + 2 \Delta x)
+ 4 f(x + \Delta x)
- 3 f(x )
}{{2\Delta x}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
- f(x + 3 \Delta x)
+ 4 f(x + 2 \Delta x)
- 5 f(x + \Delta x)
+ 2 f(x )
}{{\Delta x}^{2}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
- 3 f(x + 4 \Delta x)
+ 14 f(x + 3 \Delta x)
- 24 f(x + 2 \Delta x)
+ 18 f(x + \Delta x)
- 5 f(x )
}{{2\Delta x}^{3}}
+ O(\Delta x^{2})
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
- 2 f(x + 5 \Delta x)
+ 11 f(x + 4 \Delta x)
- 24 f(x + 3 \Delta x)
+ 26 f(x + 2 \Delta x)
- 14 f(x + \Delta x)
+ 3 f(x )
}{{\Delta x}^{4}}
+ O(\Delta x^{2})
3次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
2 f(x + 3 \Delta x)
- 9 f(x + 2 \Delta x)
+ 18 f(x + \Delta x)
- 11 f(x )
}{{6\Delta x}}
+ O(\Delta x^{3})
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
11 f(x + 4 \Delta x)
- 56 f(x + 3 \Delta x)
+ 114 f(x + 2 \Delta x)
- 104 f(x + \Delta x)
+ 35 f(x )
}{{12\Delta x}^{2}}
+ O(\Delta x^{3})
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
7 f(x + 5 \Delta x)
- 41 f(x + 4 \Delta x)
+ 98 f(x + 3 \Delta x)
- 118 f(x + 2 \Delta x)
+ 71 f(x + \Delta x)
- 17 f(x )
}{{4\Delta x}^{3}}
+ O(\Delta x^{3})
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
17 f(x + 6 \Delta x)
- 114 f(x + 5 \Delta x)
+ 321 f(x + 4 \Delta x)
- 484 f(x + 3 \Delta x)
+ 411 f(x + 2 \Delta x)
- 186 f(x + \Delta x)
+ 35 f(x )
}{{6\Delta x}^{4}}
+ O(\Delta x^{3})
4次精度
\frac{\mathrm{d}f}{\mathrm{d}x}(x) = \frac{
- 3 f(x + 4 \Delta x)
+ 16 f(x + 3 \Delta x)
- 36 f(x + 2 \Delta x)
+ 48 f(x + \Delta x)
- 25 f(x )
}{{12\Delta x}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}}(x) = \frac{
- 10 f(x + 5 \Delta x)
+ 61 f(x + 4 \Delta x)
- 156 f(x + 3 \Delta x)
+ 214 f(x + 2 \Delta x)
- 154 f(x + \Delta x)
+ 45 f(x )
}{{12\Delta x}^{2}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{3}f}{\mathrm{d}x^{3}}(x) = \frac{
- 15 f(x + 6 \Delta x)
+ 104 f(x + 5 \Delta x)
- 307 f(x + 4 \Delta x)
+ 496 f(x + 3 \Delta x)
- 461 f(x + 2 \Delta x)
+ 232 f(x + \Delta x)
- 49 f(x )
}{{8\Delta x}^{3}}
+ O(\Delta x^{4})
\frac{\mathrm{d}^{4}f}{\mathrm{d}x^{4}}(x) = \frac{
- 21 f(x + 7 \Delta x)
+ 164 f(x + 6 \Delta x)
- 555 f(x + 5 \Delta x)
+ 1056 f(x + 4 \Delta x)
- 1219 f(x + 3 \Delta x)
+ 852 f(x + 2 \Delta x)
- 333 f(x + \Delta x)
+ 56 f(x )
}{{6\Delta x}^{4}}
+ O(\Delta x^{4})
証明
いくつかの有限差分を導出していきます. 証明にはTaylor展開
\begin{aligned}
f(x+\Delta x)
&= f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots,
\\
f(x-\Delta x)
&= f(x)
- \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots,
\\
f(x+2\Delta x)
&= f(x)
+ 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots,
\\
f(x-2\Delta x)
&= f(x)
- 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots,
\end{aligned}
を用います.
中心差分, 2次精度, 1階微分
\begin{aligned}
f(x+\Delta x)
&=
f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ O\left(\Delta x^{3}\right)
\\
f(x-\Delta x)
&=
f(x)
- \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ O\left(\Delta x^{3}\right)
\end{aligned}
の差を取ると,
\begin{aligned}
f(x+\Delta x)
- f(x-\Delta x)
&=
2\frac{\partial f(x)}{\partial x} \Delta x
+ O\left(\Delta x^{3}\right)
\\
2\frac{\partial f(x)}{\partial x} \Delta x
&=
f(x+\Delta x)
- f(x-\Delta x)
+ O\left(\Delta x^{3}\right)
\\
\frac{\partial f(x)}{\partial x}
&=
\frac{f(x+\Delta x)- f(x-\Delta x)}{2\Delta x}
+ \frac{O\left(\Delta x^{3}\right)}{2\Delta x}
\\
\frac{\partial f(x)}{\partial x}
&=
\frac{f(x+\Delta x)- f(x-\Delta x)}{2\Delta x}
+ O\left(\Delta x^{2}\right)
\end{aligned}
中心差分, 2次精度, 2階微分
\begin{aligned}
f(x+\Delta x)
&= f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{4}\right)
\\
f(x-\Delta x)
&= f(x)
- \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{4}\right)
\end{aligned}
の和を取ると,
\begin{aligned}
f(x+\Delta x)
+ f(x-\Delta x)
&=
2f(x)
+ \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ O\left(\Delta x^{4}\right)
\\
\frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
&=
f(x+\Delta x)
- 2f(x)
+ f(x-\Delta x)
+ O\left(\Delta x^{4}\right)
\\
\frac{\partial^{2} f(x)}{\partial x^{2}}
&=
\frac{f(x+\Delta x) - 2f(x) + f(x-\Delta x)}{\Delta x^{2}}
+ \frac{O\left(\Delta x^{4}\right)}{\Delta x^{2}}
\\
\frac{\partial^{2} f(x)}{\partial x^{2}}
&=
\frac{f(x+\Delta x) - 2f(x) + f(x-\Delta x)}{\Delta x^{2}}
+ O\left(\Delta x^{2}\right)
\end{aligned}
中心差分, 2次精度, 3階微分
\begin{aligned}
f(x+\Delta x)
&= f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{5}\right)
\\
f(x-\Delta x)
&= f(x)
- \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{5}\right)
\end{aligned}
の差を取って2倍すると,
\begin{aligned}
f(x+\Delta x)
- f(x-\Delta x)
&=
2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
\\
2f(x+\Delta x)
- 2f(x-\Delta x)
&=
4\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
\end{aligned}
を得る. 次に
\begin{aligned}
f(x+2\Delta x)
&=
f(x)
+ 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots
\\
f(x-2\Delta x)
&=
f(x)
- 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \cdots
\end{aligned}
の差を取ると,
\begin{aligned}
f(x+2\Delta x)
- f(x-2\Delta x)
&=
4\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{8}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
\end{aligned}
を得る. さらに, 得られた2式
\begin{aligned}
2f(x+\Delta x)
- 2f(x-\Delta x)
&=
4\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
\\
f(x+2\Delta x)
- f(x-2\Delta x)
&=
4\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{8}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
\end{aligned}
の差を取って左右を入れ替えると
\begin{aligned}
- \frac{6}{3} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{5}\right)
&=
2f(x+\Delta x)
- 2f(x-\Delta x)
- f(x+2\Delta x)
+ f(x-2\Delta x)
\\
2 \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
&=
f(x+2\Delta x)
- 2f(x+\Delta x)
+ 2f(x-\Delta x)
- f(x-2\Delta x)
+ O\left(\Delta x^{5}\right)
\\
\frac{\partial^{3} f(x)}{\partial x^{3}}
&=
\frac{
f(x+2\Delta x)
- 2f(x+\Delta x)
+ 2f(x-\Delta x)
- f(x-2\Delta x)
}{2\Delta x^{3}}
+ \frac{O\left(\Delta x^{5}\right)}{2\Delta x^{3}}
\\
\frac{\partial^{3} f(x)}{\partial x^{3}}
&=
\frac{
f(x+2\Delta x)
- 2f(x+\Delta x)
+ 2f(x-\Delta x)
- f(x-2\Delta x)
}{2\Delta x^{3}}
+ O\left(\Delta x^{2}\right)
\end{aligned}
中心差分, 2次精度, 4階微分
\begin{aligned}
f(x+\Delta x)
&=
f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \frac{1}{5!} \frac{\partial^{5} f(x)}{\partial x^{5}} \Delta x^{5}
+ O\left(\Delta x^{6}\right)
\\
f(x-\Delta x)
&=
f(x)
- \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{1}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
- \frac{1}{5!} \frac{\partial^{5} f(x)}{\partial x^{5}} \Delta x^{5}
+ O\left(\Delta x^{6}\right)
\end{aligned}
の和を取って4倍すると,
\begin{aligned}
f(x+\Delta x)
+ f(x-\Delta x)
&=
2 f(x)
+ \frac{2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{2}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
\\
4f(x+\Delta x)
+ 4f(x-\Delta x)
&=
8 f(x)
+ 4 \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
\end{aligned}
を得る. 次に
\begin{aligned}
f(x+2\Delta x)
&=
f(x)
+ 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ \frac{2^5}{5!} \frac{\partial^{5} f(x)}{\partial x^{5}} \Delta x^{5}
+ O\left(\Delta x^{6}\right)
\\
f(x-2\Delta x)
&=
f(x)
- 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2^2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
- \frac{2^3}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ \frac{2^4}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
- \frac{2^5}{5!} \frac{\partial^{5} f(x)}{\partial x^{5}} \Delta x^{5}
+ O\left(\Delta x^{6}\right)
\end{aligned}
の和を取ると,
\begin{aligned}
f(x+2\Delta x)
+ f(x-2\Delta x)
&=
2f(x)
+ 4 \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{4}{3} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
\end{aligned}
を得る. さらに, 得られた2式
\begin{aligned}
4f(x+\Delta x)
+ 4f(x-\Delta x)
&=
8 f(x)
+ 4 \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
\\
f(x+2\Delta x)
+ f(x-2\Delta x)
&=
2f(x)
+ 4 \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{4}{3} \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
\end{aligned}
の差を取ると
\begin{aligned}
6 f(x)
- \frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
+ O\left(\Delta x^{6}\right)
&=
4f(x+\Delta x)
+ 4f(x-\Delta x)
- f(x+2\Delta x)
- f(x-2\Delta x)
\\
\frac{\partial^{4} f(x)}{\partial x^{4}} \Delta x^{4}
&=
f(x+2\Delta x)
- 4f(x+\Delta x)
+ 6 f(x)
- 4f(x-\Delta x)
+ f(x-2\Delta x)
+ O\left(\Delta x^{6}\right)
\\
\frac{\partial^{4} f(x)}{\partial x^{4}}
&=
\frac{f(x+2\Delta x)
- 4f(x+\Delta x)
+ 6 f(x)
- 4f(x-\Delta x)
+ f(x-2\Delta x)
}{\Delta x^{4}}
+ O\left(\Delta x^{2}\right)
\end{aligned}
前進差分, 1次精度, 1階微分
f(x+\Delta x)
=
f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ O\left(\Delta x^{2}\right)
から直ちに
\begin{aligned}
f(x+\Delta x)
&=
f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ O\left(\Delta x^{2}\right)
\\
\frac{\partial f(x)}{\partial x} \Delta x
&=
f(x+\Delta x)
- f(x)
+ O\left(\Delta x^{2}\right)
\\
\frac{\partial f(x)}{\partial x}
&=
\frac{f(x+\Delta x) - f(x)}{\Delta x}
- \frac{O\left(\Delta x^{2}\right)}{\Delta x}
\\
\frac{\partial f(x)}{\partial x}
&=
\frac{f(x+\Delta x) - f(x)}{\Delta x}
+ O\left(\Delta x\right)
\end{aligned}
前身差分, 1次精度, 2階微分
まず
\begin{aligned}
f(x+\Delta x)
&= f(x)
+ \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{1}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{1}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{4}\right)
\end{aligned}
を2倍して,
\begin{aligned}
2 f(x+\Delta x)
&= 2f(x)
+ 2\frac{\partial f(x)}{\partial x} \Delta x
+ \frac{2}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{2}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{4}\right)
\end{aligned}
となる. これと
\begin{aligned}
f(x+2\Delta x)
&= f(x)
+ 2 \frac{\partial f(x)}{\partial x} \Delta x
+ \frac{4}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ \frac{8}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}} \Delta x^{3}
+ O\left(\Delta x^{4}\right)
\end{aligned}
の差を取ると,
\begin{aligned}
f(x+2\Delta x) -
2 f(x+\Delta x) =
- f(x)
+ \frac{\partial^{2} f(x)}{\partial x^{2}} \Delta x^{2}
+ O\left(\Delta x^{3}\right)
\end{aligned}
となり, これを整理して次式を得る.
\begin{aligned}
\frac{\partial^{2} f(x)}{\partial x^{2}}
&=
\frac{f(x+2\Delta x) - 2f(x+\Delta x) + f(x)}{\Delta x^{2}}
+ O\left(\Delta x\right)
\end{aligned}
まとめ
有限差分法 (Finite Difference Method, FDM) で用いる公式を列挙・証明しました.
Discussion