Zenn
🦔

High-Dimensional Statistics | Solution to Exercise 2.3

に公開

Exercise 2.3 (Polynomial Markov versus Chernoff)

Suppose that X0X \geq 0, and that the moment generating function of XX exists in an interval around zero. Given some δ>0\delta > 0 and integer k=1,2k = 1, 2 \dots, show that

infk=1,2,E[Xk]δkinfλ>0E[eλX]eλδ \inf_{k=1, 2, \dots} \frac{\mathrm{E}[|X|^k]}{\delta^k} \leq \inf_{\lambda > 0}\frac{\mathrm{E}[e^{\lambda X}]}{e^{\lambda \delta}}

Consequently, an optimized bound based on polynomial moments is always at least as good as Chernoff upper bound.

Solution

Let c=infkE[Xk]δkc = \inf_{k} \frac{\mathrm{E}[|X|^k]}{\delta^k}. Then cE[Xk]δkc \leq \frac{\mathrm{E}[|X|^k]}{\delta^k} for all kk.

Since λ>0\lambda >0, we have

cλkδkk!λkE[Xk]k!. c\frac{\lambda^k \delta^k}{k!} \leq \frac{\lambda^k \mathrm{E}[|X|^k]}{k!}.

By the assumption, the moment generating function of XX exists, therefore,

ck=1λkδkk!k=1λkE[Xk]k!.c\sum_{k=1}^\infty \frac{\lambda^k \delta^k}{k!} \leq \sum_{k=1}^\infty \frac{\lambda^k \mathrm{E}[|X|^k]}{k!}.

Using the Taylor expansion of an exponential function, we have

cE[eλX]eλδ.c \leq \frac{\mathrm{E}[e^{\lambda X}]}{e^{\lambda \delta}}.

Taking the infimum of kk and λ>0\lambda > 0 finishes the proof.

Reference

Wainwright, Martin. High-dimensional statistics : a non-asymptotic viewpoint. Cambridge, United Kingdom New York, NY, USA: Cambridge University Press, 2019.

Philips, Thomas & Nelson, Randolph. (1995). The Moment Bound Is Tighter Than Chernoff's Bound for Positive Tail Probabilities. The American Statistician. 49. 175. 10.2307/2684633.

Discussion

ログインするとコメントできます