Open14

素数桁のレピュニットが持つ素因数

Mizar/みざーMizar/みざー

(予想)

p, q を奇素数、 b|b|\ge 2 の整数とする。

基数 bp 桁のレピュニット \displaystyle{R_p^{(b)}=\frac{b^p-1}{b-1}} を割り切れる 素数 q は以下のような形となる。

p,q\text{ is odd prime},\quad p\ge 3,\quad q\ge 3,\quad b\text{ is integer},\quad |b|\ge 2

q\mid\frac{b^p-1}{b-1}\implies\begin{cases} q\equiv 1(\operatorname{mod}2p)\text{ or }q=p&\left\{p\mid (b-1)\right\}\\ q\equiv 1(\operatorname{mod}2p)&\left\{p\nmid (b-1)\right\}\\ \end{cases}
  • p\mid (b-1) の意味 : (b-1)p で割り切れる時
  • p\nmid (b-1) の意味 : (b-1)p で割り切れない時

以下は |b|\le 50,\ p\lt 50 において レピュニット \displaystyle{R_p^{(b)}=\frac{b^p-1}{b-1}} を素因数分解した時の素因数の形を示したリスト。

Mizar/みざーMizar/みざー
  • b=-50, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{2}} \bigr]
  • b=-50, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1}, (14p+1)^{1} \bigr]
  • b=-50, p=5, \bigl[ (2p+1)^{1}, (111408p+1)^{1} \bigr]
  • b=-50, p=7, \bigl[ (870p+1)^{1}, (359280p+1)^{1} \bigr]
  • b=-50, p=11, \bigl[ (8p+1)^{1}, (97795119069078p+1)^{1} \bigr]
  • b=-50, p=13, \bigl[ (2434p+1)^{1}, (581860501220512p+1)^{1} \bigr]
  • b=-50, p=17, \bigl[ \color{red}\bm{(1p+0)^{1}}, (13847228706p+1)^{1}, (21989242474200p+1)^{1} \bigr]
  • b=-50, p=19, \bigl[ (24p+1)^{1}, (174p+1)^{1}, (8464p+1)^{1}, (809886116546300584p+1)^{1} \bigr]
  • b=-50, p=23, \bigl[ (246p+1)^{1}, (110295144p+1)^{1}, (70792649308527687408824p+1)^{1} \bigr]
  • b=-50, p=29, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (3674360p+1)^{1}, (3830262553829613289849808933814818p+1)^{1} \bigr]
  • b=-50, p=31, \bigl[ (279448p+1)^{1}, (3399973364552178761343783162519639474827518p+1)^{1} \bigr]
  • b=-50, p=37, \bigl[ (34p+1)^{1}, (43768p+1)^{1}, (52474800p+1)^{1}, (1883090000095578p+1)^{1}, (1398004336844168504698170p+1)^{1} \bigr]
  • b=-50, p=41, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (37484799639819896471237661066p+1)^{1}, (23070370206462280725880783336968p+1)^{1} \bigr]
  • b=-50, p=43, \bigl[ (891426742p+1)^{1}, (1085509454811286p+1)^{1}, (2897446159919802661487725736589014196330342p+1)^{1} \bigr]
  • b=-50, p=47, \bigl[ (14p+1)^{1}, (38p+1)^{1}, (316056928016896781924033067729080p+1)^{1}, (1694529095375327796989529787561720158p+1)^{1} \bigr]
  • b=-49, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=-49, p=3, \bigl[ (4p+1)^{1}, (60p+1)^{1} \bigr]
  • b=-49, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (56p+1)^{1}, (804p+1)^{1} \bigr]
  • b=-49, p=7, \bigl[ (1937780208p+1)^{1} \bigr]
  • b=-49, p=11, \bigl[ (60p+1)^{1}, (128p+1)^{1}, (7632762308p+1)^{1} \bigr]
  • b=-49, p=13, \bigl[ (12p+1)^{1}, (91989028296401316p+1)^{1} \bigr]
  • b=-49, p=17, \bigl[ (8p+1)^{1}, (3491844p+1)^{1}, (7828708198450724p+1)^{1} \bigr]
  • b=-49, p=19, \bigl[ (136773485733813705386496995472p+1)^{1} \bigr]
  • b=-49, p=23, \bigl[ (1160p+1)^{1}, (28260p+1)^{1}, (674520p+1)^{1}, (2420954015733063644p+1)^{1} \bigr]
  • b=-49, p=29, \bigl[ (8p+1)^{1}, (4719072p+1)^{1}, (1921243707252p+1)^{1}, (4024642759619777301428p+1)^{1} \bigr]
  • b=-49, p=31, \bigl[ (1095084816p+1)^{1}, (2403311250599459812p+1)^{1}, (6349881464815873900p+1)^{1} \bigr]
  • b=-49, p=37, \bigl[ (186244404035294113902558370990468780134013945058340435676128p+1)^{1} \bigr]
  • b=-49, p=41, \bigl[ (825416p+1)^{1}, (132917760394997528p+1)^{1}, (5253657974556289804196077149512596219296p+1)^{1} \bigr]
  • b=-49, p=43, \bigl[ (4p+1)^{1}, (24p+1)^{1}, (12412136890304948050288111833254978910105955082256813345265067332p+1)^{1} \bigr]
  • b=-49, p=47, \bigl[ (2040p+1)^{1}, (97337388p+1)^{1}, (26670907805367151649309936911206161636210491098582321908070300p+1)^{1} \bigr]
  • b=-48, p=2, \bigl[ \color{magenta}\bm{(23p+1)^{1}} \bigr]
  • b=-48, p=3, \bigl[ (12p+1)^{1}, (20p+1)^{1} \bigr]
  • b=-48, p=5, \bigl[ (1040016p+1)^{1} \bigr]
  • b=-48, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (244509930p+1)^{1} \bigr]
  • b=-48, p=11, \bigl[ (330p+1)^{1}, (1592350237626p+1)^{1} \bigr]
  • b=-48, p=13, \bigl[ (714p+1)^{1}, (1214250533876802p+1)^{1} \bigr]
  • b=-48, p=17, \bigl[ (45756841037179073428036560p+1)^{1} \bigr]
  • b=-48, p=19, \bigl[ (78p+1)^{1}, (87690p+1)^{1}, (2383830p+1)^{1}, (842868560922p+1)^{1} \bigr]
  • b=-48, p=23, \bigl[ (6p+1)^{1}, (554837895254064p+1)^{1}, (233193151484603310p+1)^{1} \bigr]
  • b=-48, p=29, \bigl[ (12p+1)^{1}, (11496784186179610142865690166216031619074772p+1)^{1} \bigr]
  • b=-48, p=31, \bigl[ (18858p+1)^{1}, (2074398p+1)^{1}, (230042845544690162059745399479145796p+1)^{1} \bigr]
  • b=-48, p=37, \bigl[ (267366p+1)^{1}, (133708522598998813459296p+1)^{1}, (1810753018800779483847868854p+1)^{1} \bigr]
  • b=-48, p=41, \bigl[ (268367415132p+1)^{1}, (38583103306510968276960938792150625995642370434565636p+1)^{1} \bigr]
  • b=-48, p=43, \bigl[ (382032p+1)^{1}, (8927154p+1)^{1}, (147896863546535935622271278622538087790143993322558562p+1)^{1} \bigr]
  • b=-48, p=47, \bigl[ (1229628p+1)^{1}, (25949253474831630408p+1)^{1}, (305469175423368246276p+1)^{1}, (4475943878616478472321880p+1)^{1} \bigr]
  • b=-47, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(11p+1)^{1}} \bigr]
  • b=-47, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (34p+1)^{1} \bigr]
  • b=-47, p=5, \bigl[ (955604p+1)^{1} \bigr]
  • b=-47, p=7, \bigl[ (840p+1)^{1}, (256386p+1)^{1} \bigr]
  • b=-47, p=11, \bigl[ (35396p+1)^{1}, (12025261458p+1)^{1} \bigr]
  • b=-47, p=13, \bigl[ (10p+1)^{1}, (952p+1)^{1}, (5397602233854p+1)^{1} \bigr]
  • b=-47, p=17, \bigl[ (649934p+1)^{1}, (2955664998684725214p+1)^{1} \bigr]
  • b=-47, p=19, \bigl[ (64545276034955575995024916278p+1)^{1} \bigr]
  • b=-47, p=23, \bigl[ (260184642827957962630982799621016394p+1)^{1} \bigr]
  • b=-47, p=29, \bigl[ (2p+1)^{1}, (1052p+1)^{1}, (17652p+1)^{1}, (501800p+1)^{1}, (51873728p+1)^{1}, (110268572368127558p+1)^{1} \bigr]
  • b=-47, p=31, \bigl[ (3052p+1)^{1}, (9610p+1)^{1}, (72178p+1)^{1}, (8168258031856p+1)^{1}, (287829589290074406p+1)^{1} \bigr]
  • b=-47, p=37, \bigl[ (4p+1)^{1}, (11096771180062750p+1)^{1}, (678567661924550192776344242171165604414p+1)^{1} \bigr]
  • b=-47, p=41, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (66p+1)^{1}, (1100972052284408596944943070291057058776722461045083764218p+1)^{1} \bigr]
  • b=-47, p=43, \bigl[ (10p+1)^{1}, (22p+1)^{1}, (92903832250126208566p+1)^{1}, (236139622528679004133671691556104908958660p+1)^{1} \bigr]
  • b=-47, p=47, \bigl[ (14p+1)^{1}, (330p+1)^{1}, (1394p+1)^{1}, (450618p+1)^{1}, (223812548p+1)^{1}, (1297089860p+1)^{1}, (53332168394p+1)^{1}, (75391785622320208980636p+1)^{1} \bigr]
  • b=-46, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}}, (2p+1)^{1} \bigr]
  • b=-46, p=3, \bigl[ (6p+1)^{1}, (36p+1)^{1} \bigr]
  • b=-46, p=5, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (14p+1)^{1}, (36p+1)^{1} \bigr]
  • b=-46, p=7, \bigl[ (1324673730p+1)^{1} \bigr]
  • b=-46, p=11, \bigl[ (90p+1)^{1}, (36338p+1)^{1}, (9528338p+1)^{1} \bigr]
  • b=-46, p=13, \bigl[ (16102p+1)^{1}, (32283852341344p+1)^{1} \bigr]
  • b=-46, p=17, \bigl[ (216p+1)^{1}, (6299635634011346426118p+1)^{1} \bigr]
  • b=-46, p=19, \bigl[ (78p+1)^{1}, (84p+1)^{1}, (27204p+1)^{1}, (458892p+1)^{1}, (4104402384p+1)^{1} \bigr]
  • b=-46, p=23, \bigl[ (162033358841136164361412492057211490p+1)^{1} \bigr]
  • b=-46, p=29, \bigl[ (12054p+1)^{1}, (85473698p+1)^{1}, (1405142415102317774230673314250p+1)^{1} \bigr]
  • b=-46, p=31, \bigl[ (10p+1)^{1}, (136p+1)^{1}, (68358834151390p+1)^{1}, (867187280460308178438029542p+1)^{1} \bigr]
  • b=-46, p=37, \bigl[ (951101134p+1)^{1}, (28009158378790p+1)^{1}, (524577891637309763328029730320334p+1)^{1} \bigr]
  • b=-46, p=41, \bigl[ (2p+1)^{1}, (398p+1)^{1}, (76826852p+1)^{1}, (18118442180649795272870145171600511294904489269310p+1)^{1} \bigr]
  • b=-46, p=43, \bigl[ (34896p+1)^{1}, (275314p+1)^{1}, (7624612p+1)^{1}, (26778920246520091281361279670516093768772268836p+1)^{1} \bigr]
  • b=-46, p=47, \bigl[ \color{red}\bm{(1p+0)^{1}}, (14p+1)^{1}, (20627144008917485363248589836812677198797057529693347613363311039312998p+1)^{1} \bigr]
  • b=-45, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=-45, p=3, \bigl[ (2p+1)^{1}, (94p+1)^{1} \bigr]
  • b=-45, p=5, \bigl[ (8p+1)^{1}, (19568p+1)^{1} \bigr]
  • b=-45, p=7, \bigl[ (6p+1)^{1}, (26987538p+1)^{1} \bigr]
  • b=-45, p=11, \bigl[ (6p+1)^{1}, (45197283382122p+1)^{1} \bigr]
  • b=-45, p=13, \bigl[ (154p+1)^{1}, (194556p+1)^{1}, (1024217974p+1)^{1} \bigr]
  • b=-45, p=17, \bigl[ (1725613898p+1)^{1}, (554642864101826p+1)^{1} \bigr]
  • b=-45, p=19, \bigl[ (78p+1)^{1}, (3292p+1)^{1}, (112674p+1)^{1}, (148452423233092p+1)^{1} \bigr]
  • b=-45, p=23, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (20p+1)^{1}, (1202p+1)^{1}, (1416p+1)^{1}, (222547691198706519882p+1)^{1} \bigr]
  • b=-45, p=29, \bigl[ (12p+1)^{1}, (167774p+1)^{1}, (387310166438717924063391233344564994p+1)^{1} \bigr]
  • b=-45, p=31, \bigl[ (21140754180p+1)^{1}, (1901018009927820004484336113347665400p+1)^{1} \bigr]
  • b=-45, p=37, \bigl[ (4p+1)^{1}, (3766p+1)^{1}, (132318p+1)^{1}, (781498p+1)^{1}, (2949046893370937690500695437048063878p+1)^{1} \bigr]
  • b=-45, p=41, \bigl[ (2p+1)^{1}, (10680p+1)^{1}, (1787826p+1)^{1}, (3392169615423951094962p+1)^{1}, (86569847971547028577485146p+1)^{1} \bigr]
  • b=-45, p=43, \bigl[ (22p+1)^{1}, (1839962706974677665469654p+1)^{1}, (826578966499964720003373659764226347500p+1)^{1} \bigr]
  • b=-45, p=47, \bigl[ (22456158366p+1)^{1}, (106550465814021510867296244p+1)^{1}, (43958809966352891663838009507570606p+1)^{1} \bigr]
  • b=-44, p=2, \bigl[ \color{magenta}\bm{(21p+1)^{1}} \bigr]
  • b=-44, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (210p+1)^{1} \bigr]
  • b=-44, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (84p+1)^{1}, (348p+1)^{1} \bigr]
  • b=-44, p=7, \bigl[ (1013580348p+1)^{1} \bigr]
  • b=-44, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (90p+1)^{1}, (276p+1)^{1}, (392408p+1)^{1} \bigr]
  • b=-44, p=13, \bigl[ (1426p+1)^{1}, (213620350739302p+1)^{1} \bigr]
  • b=-44, p=17, \bigl[ (530274888p+1)^{1}, (1259169173104700p+1)^{1} \bigr]
  • b=-44, p=19, \bigl[ (352p+1)^{1}, (2939500528153313223108460p+1)^{1} \bigr]
  • b=-44, p=23, \bigl[ (2p+1)^{1}, (1295308905675223436006729105352486p+1)^{1} \bigr]
  • b=-44, p=29, \bigl[ (2p+1)^{1}, (323302178483828p+1)^{1}, (633371424872120701171229594p+1)^{1} \bigr]
  • b=-44, p=31, \bigl[ (229682836p+1)^{1}, (1649521698p+1)^{1}, (954454048236p+1)^{1}, (58902276890710p+1)^{1} \bigr]
  • b=-44, p=37, \bigl[ (52391481527728p+1)^{1}, (1990088492601143202803197400328216946130020p+1)^{1} \bigr]
  • b=-44, p=41, \bigl[ (37892942p+1)^{1}, (17589766067066p+1)^{1}, (335108904356592p+1)^{1}, (847632184327242853974656p+1)^{1} \bigr]
  • b=-44, p=43, \bigl[ (3582p+1)^{1}, (67680p+1)^{1}, (53735130509489363246478901346868691678636523214429667626p+1)^{1} \bigr]
  • b=-44, p=47, \bigl[ (171776p+1)^{1}, (7831538p+1)^{1}, (2365532019270628781100907640p+1)^{1}, (249996206365939548395030040078p+1)^{1} \bigr]
  • b=-43, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-43, p=3, \bigl[ (4p+1)^{1}, (46p+1)^{1} \bigr]
  • b=-43, p=5, \bigl[ (668220p+1)^{1} \bigr]
  • b=-43, p=7, \bigl[ (882527958p+1)^{1} \bigr]
  • b=-43, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (6p+1)^{1}, (32642p+1)^{1}, (315458p+1)^{1} \bigr]
  • b=-43, p=13, \bigl[ (4p+1)^{1}, (4242p+1)^{1}, (1027770462970p+1)^{1} \bigr]
  • b=-43, p=17, \bigl[ (289294064p+1)^{1}, (1596885226409024p+1)^{1} \bigr]
  • b=-43, p=19, \bigl[ (12992549454139254324052984074p+1)^{1} \bigr]
  • b=-43, p=23, \bigl[ (2p+1)^{1}, (797901630p+1)^{1}, (42542099555010530269130p+1)^{1} \bigr]
  • b=-43, p=29, \bigl[ (2p+1)^{1}, (23580p+1)^{1}, (238691948p+1)^{1}, (658725271640078057857090878p+1)^{1} \bigr]
  • b=-43, p=31, \bigl[ (121473719148p+1)^{1}, (208474092707356p+1)^{1}, (13075248275875405558p+1)^{1} \bigr]
  • b=-43, p=37, \bigl[ (18130p+1)^{1}, (246204154p+1)^{1}, (24385464142029087084p+1)^{1}, (305666912199613032000p+1)^{1} \bigr]
  • b=-43, p=41, \bigl[ (2p+1)^{1}, (602p+1)^{1}, (16970p+1)^{1}, (26788496135228910p+1)^{1}, (3321204336756327316310206222026068p+1)^{1} \bigr]
  • b=-43, p=43, \bigl[ (22p+1)^{1}, (30p+1)^{1}, (156p+1)^{1}, (2016p+1)^{1}, (11300604859819224751884574p+1)^{1}, (26531041957417103595862032p+1)^{1} \bigr]
  • b=-43, p=47, \bigl[ (6p+1)^{1}, (14p+1)^{1}, (296p+1)^{1}, (530243580p+1)^{1}, (300175131098966243030p+1)^{1}, (31428843381560917113631259151668p+1)^{1} \bigr]
  • b=-42, p=2, \bigl[ (20p+1)^{1} \bigr]
  • b=-42, p=3, \bigl[ (574p+1)^{1} \bigr]
  • b=-42, p=5, \bigl[ (26p+1)^{1}, (4640p+1)^{1} \bigr]
  • b=-42, p=7, \bigl[ (4p+1)^{1}, (48p+1)^{1}, (78370p+1)^{1} \bigr]
  • b=-42, p=11, \bigl[ (2p+1)^{3}, (6p+1)^{1}, (1860470306p+1)^{1} \bigr]
  • b=-42, p=13, \bigl[ (1420p+1)^{1}, (88732p+1)^{1}, (106304034p+1)^{1} \bigr]
  • b=-42, p=17, \bigl[ (6p+1)^{1}, (228p+1)^{1}, (13489241627741917920p+1)^{1} \bigr]
  • b=-42, p=19, \bigl[ (804p+1)^{1}, (556514369331443763256602p+1)^{1} \bigr]
  • b=-42, p=23, \bigl[ (330p+1)^{1}, (88117034p+1)^{1}, (1420530914086542308030p+1)^{1} \bigr]
  • b=-42, p=29, \bigl[ (2p+1)^{1}, (60p+1)^{1}, (926215800209687219278453007060927168492p+1)^{1} \bigr]
  • b=-42, p=31, \bigl[ (132p+1)^{1}, (1087986p+1)^{1}, (25935796p+1)^{1}, (38600610p+1)^{1}, (1182099290460451318p+1)^{1} \bigr]
  • b=-42, p=37, \bigl[ (4p+1)^{1}, (34p+1)^{1}, (166p+1)^{1}, (1799355934816p+1)^{1}, (9411140270681435452721628304195314p+1)^{1} \bigr]
  • b=-42, p=41, \bigl[ (2p+1)^{1}, (80477593770p+1)^{1}, (7403407629116172420716309025565718507965584304466p+1)^{1} \bigr]
  • b=-42, p=43, \bigl[ \color{red}\bm{(1p+0)^{1}}, (24p+1)^{1}, (2734p+1)^{1}, (5041940274398774618800p+1)^{1}, (3012152713792667022357044120702406p+1)^{1} \bigr]
  • b=-42, p=47, \bigl[ (134p+1)^{1}, (1541270005874173287693354763490739005265317137254274747877283793285448p+1)^{1} \bigr]
  • b=-41, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}}, (2p+1)^{1} \bigr]
  • b=-41, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (182p+1)^{1} \bigr]
  • b=-41, p=5, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (822p+1)^{1} \bigr]
  • b=-41, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (10p+1)^{1}, (1332856p+1)^{1} \bigr]
  • b=-41, p=11, \bigl[ (210p+1)^{1}, (515442830090p+1)^{1} \bigr]
  • b=-41, p=13, \bigl[ (6p+1)^{1}, (33276p+1)^{1}, (49578676770p+1)^{1} \bigr]
  • b=-41, p=17, \bigl[ (3661232867648144577316160p+1)^{1} \bigr]
  • b=-41, p=19, \bigl[ (10p+1)^{1}, (28830821619945171558546130p+1)^{1} \bigr]
  • b=-41, p=23, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (20p+1)^{1}, (42p+1)^{1}, (12674p+1)^{1}, (7598074070725633026p+1)^{1} \bigr]
  • b=-41, p=29, \bigl[ (72p+1)^{1}, (116296620648996512p+1)^{1}, (6873548850020877683400p+1)^{1} \bigr]
  • b=-41, p=31, \bigl[ (10p+1)^{1}, (2586p+1)^{1}, (188302300p+1)^{1}, (3867117996p+1)^{1}, (4364817773389304208p+1)^{1} \bigr]
  • b=-41, p=37, \bigl[ (34p+1)^{1}, (240727637702013043907194755255524693437694984108531914p+1)^{1} \bigr]
  • b=-41, p=41, \bigl[ (440p+1)^{1}, (497480p+1)^{1}, (2100317099811423767811663198578683726634928645258080p+1)^{1} \bigr]
  • b=-41, p=43, \bigl[ (4p+1)^{1}, (62802p+1)^{1}, (18831230599240p+1)^{1}, (20618262152087469196p+1)^{1}, (3693450040927541198386p+1)^{1} \bigr]
  • b=-41, p=47, \bigl[ (14p+1)^{1}, (26p+1)^{1}, (43008p+1)^{1}, (1965780062605541891766152119457358980089601601169145999433404p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=-40, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, (6p+1)^{1} \bigr]
  • b=-40, p=3, \bigl[ (2p+1)^{1}, (74p+1)^{1} \bigr]
  • b=-40, p=5, \bigl[ (2p+1)^{2}, (4128p+1)^{1} \bigr]
  • b=-40, p=7, \bigl[ (30p+1)^{1}, (2705550p+1)^{1} \bigr]
  • b=-40, p=11, \bigl[ (2p+1)^{1}, (40434821170346p+1)^{1} \bigr]
  • b=-40, p=13, \bigl[ (4p+1)^{1}, (6581440p+1)^{1}, (277659492p+1)^{1} \bigr]
  • b=-40, p=17, \bigl[ (38p+1)^{1}, (235760p+1)^{1}, (950525213149806p+1)^{1} \bigr]
  • b=-40, p=19, \bigl[ (22p+1)^{1}, (84p+1)^{1}, (5273311647377472348154p+1)^{1} \bigr]
  • b=-40, p=23, \bigl[ (2p+1)^{1}, (34634p+1)^{1}, (199314647572992975061771920p+1)^{1} \bigr]
  • b=-40, p=29, \bigl[ (2p+1)^{1}, (14969964p+1)^{1}, (3816024438620718p+1)^{1}, (8552202629106272p+1)^{1} \bigr]
  • b=-40, p=31, \bigl[ (43753132p+1)^{1}, (812261388042150p+1)^{1}, (1062394556805118596946p+1)^{1} \bigr]
  • b=-40, p=37, \bigl[ (96525394p+1)^{1}, (241891348p+1)^{1}, (37336427031064p+1)^{1}, (2819903542553765079166p+1)^{1} \bigr]
  • b=-40, p=41, \bigl[ \color{red}\bm{(1p+0)^{1}}, (62p+1)^{1}, (8448p+1)^{1}, (3006123659262246p+1)^{1}, (64629679160048211915695676592084728p+1)^{1} \bigr]
  • b=-40, p=43, \bigl[ (4p+1)^{1}, (30p+1)^{1}, (70p+1)^{1}, (352720p+1)^{1}, (43027453493359075806161845318558751315787449823652p+1)^{1} \bigr]
  • b=-40, p=47, \bigl[ (156p+1)^{1}, (2744p+1)^{1}, (1767268454p+1)^{1}, (11199014900532188p+1)^{1}, (24859523312437141353570596098430150p+1)^{1} \bigr]
  • b=-39, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(9p+1)^{1}} \bigr]
  • b=-39, p=3, \bigl[ (494p+1)^{1} \bigr]
  • b=-39, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (8202p+1)^{1} \bigr]
  • b=-39, p=7, \bigl[ (6p+1)^{1}, (10p+1)^{1}, (160534p+1)^{1} \bigr]
  • b=-39, p=11, \bigl[ (1110p+1)^{1}, (59089017600p+1)^{1} \bigr]
  • b=-39, p=13, \bigl[ (928616824168231884p+1)^{1} \bigr]
  • b=-39, p=17, \bigl[ (6p+1)^{1}, (146336p+1)^{1}, (6411385731974726p+1)^{1} \bigr]
  • b=-39, p=19, \bigl[ (384p+1)^{1}, (4395828p+1)^{1}, (3668388284626962p+1)^{1} \bigr]
  • b=-39, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (1064p+1)^{1}, (7606020p+1)^{1}, (152761165898049402p+1)^{1} \bigr]
  • b=-39, p=29, \bigl[ (2p+1)^{1}, (202098738612198499642685536215617362086830p+1)^{1} \bigr]
  • b=-39, p=31, \bigl[ (136p+1)^{1}, (580p+1)^{1}, (223750333141880274113611110453350951142p+1)^{1} \bigr]
  • b=-39, p=37, \bigl[ (40029310888507776340p+1)^{1}, (33771387716177703514621576506431728p+1)^{1} \bigr]
  • b=-39, p=41, \bigl[ (2p+1)^{1}, (470586p+1)^{1}, (681538299337802p+1)^{1}, (2333618949970097613499334760341859306p+1)^{1} \bigr]
  • b=-39, p=43, \bigl[ (736p+1)^{1}, (2082p+1)^{1}, (1577635705206965738754p+1)^{1}, (787880675935762945385127356219302p+1)^{1} \bigr]
  • b=-39, p=47, \bigl[ (6p+1)^{1}, (4118022717716p+1)^{1}, (5852017947374583588119043589599871561594904677739857736p+1)^{1} \bigr]
  • b=-38, p=2, \bigl[ (18p+1)^{1} \bigr]
  • b=-38, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (22p+1)^{1} \bigr]
  • b=-38, p=5, \bigl[ (406334p+1)^{1} \bigr]
  • b=-38, p=7, \bigl[ (4p+1)^{1}, (34p+1)^{1}, (60468p+1)^{1} \bigr]
  • b=-38, p=11, \bigl[ (2p+1)^{1}, (30p+1)^{1}, (42p+1)^{1}, (102p+1)^{1}, (140490p+1)^{1} \bigr]
  • b=-38, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (42p+1)^{1}, (28336p+1)^{1}, (4894284p+1)^{1} \bigr]
  • b=-38, p=17, \bigl[ (18p+1)^{1}, (17000p+1)^{1}, (2700576p+1)^{1}, (265989540p+1)^{1} \bigr]
  • b=-38, p=19, \bigl[ (10p+1)^{1}, (134592300562p+1)^{1}, (2865912607818p+1)^{1} \bigr]
  • b=-38, p=23, \bigl[ (2p+1)^{1}, (14040p+1)^{1}, (411980p+1)^{1}, (16766102518620157940p+1)^{1} \bigr]
  • b=-38, p=29, \bigl[ (2p+1)^{1}, (612p+1)^{1}, (5527062140p+1)^{1}, (686147186942p+1)^{1}, (1723963892922p+1)^{1} \bigr]
  • b=-38, p=31, \bigl[ (430p+1)^{1}, (583448416967865562460243824697797797827476p+1)^{1} \bigr]
  • b=-38, p=37, \bigl[ (16p+1)^{1}, (37770p+1)^{1}, (23676801366256264849828545618733221667369705228p+1)^{1} \bigr]
  • b=-38, p=41, \bigl[ (165582p+1)^{1}, (6010731848665950561606p+1)^{1}, (22068394685321911280826120338990p+1)^{1} \bigr]
  • b=-38, p=43, \bigl[ (4p+1)^{1}, (24p+1)^{1}, (40p+1)^{1}, (136p+1)^{1}, (45160p+1)^{1}, (24602934555636p+1)^{1}, (13755446627895042194528342456154p+1)^{1} \bigr]
  • b=-38, p=47, \bigl[ (120p+1)^{1}, (281862978p+1)^{1}, (379335421175662990394926974p+1)^{1}, (72786917340099792150593619734p+1)^{1} \bigr]
  • b=-37, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=-37, p=3, \bigl[ (10p+1)^{1}, (14p+1)^{1} \bigr]
  • b=-37, p=5, \bigl[ (364968p+1)^{1} \bigr]
  • b=-37, p=7, \bigl[ (356886756p+1)^{1} \bigr]
  • b=-37, p=11, \bigl[ (2p+1)^{1}, (188p+1)^{1}, (8944464738p+1)^{1} \bigr]
  • b=-37, p=13, \bigl[ (4p+1)^{1}, (45474p+1)^{1}, (15736652326p+1)^{1} \bigr]
  • b=-37, p=17, \bigl[ (6p+1)^{1}, (6860559993177359635158p+1)^{1} \bigr]
  • b=-37, p=19, \bigl[ \color{red}\bm{(1p+0)^{1}}, (10p+1)^{1}, (426142152p+1)^{1}, (29457812651728p+1)^{1} \bigr]
  • b=-37, p=23, \bigl[ (17264p+1)^{1}, (65010p+1)^{1}, (67647756p+1)^{1}, (1450669032266p+1)^{1} \bigr]
  • b=-37, p=29, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (1362p+1)^{1}, (3352778509681095704437293763081652p+1)^{1} \bigr]
  • b=-37, p=31, \bigl[ (22p+1)^{1}, (36p+1)^{1}, (60p+1)^{1}, (208p+1)^{1}, (2752p+1)^{1}, (25198327236p+1)^{1}, (5723305248671086p+1)^{1} \bigr]
  • b=-37, p=37, \bigl[ (16p+1)^{1}, (3625276p+1)^{1}, (117730600p+1)^{1}, (167297460p+1)^{1}, (3500248032963047748708304p+1)^{1} \bigr]
  • b=-37, p=41, \bigl[ (20p+1)^{1}, (1422728318p+1)^{1}, (12230546480557554876p+1)^{1}, (528718521727591672579066446p+1)^{1} \bigr]
  • b=-37, p=43, \bigl[ (4p+1)^{1}, (24p+1)^{1}, (24539292p+1)^{1}, (14730531174640852743952p+1)^{1}, (138758089143705398905733844p+1)^{1} \bigr]
  • b=-37, p=47, \bigl[ (20p+1)^{1}, (908p+1)^{1}, (52034530902146322943010295906p+1)^{1}, (289352053365322884145866947742366p+1)^{1} \bigr]
  • b=-36, p=2, \bigl[ (2p+1)^{1}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-36, p=3, \bigl[ (4p+1)^{1}, (32p+1)^{1} \bigr]
  • b=-36, p=5, \bigl[ (48p+1)^{1}, (1356p+1)^{1} \bigr]
  • b=-36, p=7, \bigl[ (60p+1)^{1}, (718680p+1)^{1} \bigr]
  • b=-36, p=11, \bigl[ (5316p+1)^{1}, (6408p+1)^{1}, (78456p+1)^{1} \bigr]
  • b=-36, p=13, \bigl[ (24p+1)^{1}, (180p+1)^{1}, (483995899632p+1)^{1} \bigr]
  • b=-36, p=17, \bigl[ (54948p+1)^{1}, (487630196785963176p+1)^{1} \bigr]
  • b=-36, p=19, \bigl[ (54250672692p+1)^{1}, (512428718054832p+1)^{1} \bigr]
  • b=-36, p=23, \bigl[ (264p+1)^{1}, (98256p+1)^{1}, (415860p+1)^{1}, (5582934562951464p+1)^{1} \bigr]
  • b=-36, p=29, \bigl[ (12p+1)^{1}, (3625328567923416264500056246873387852752p+1)^{1} \bigr]
  • b=-36, p=31, \bigl[ (1533960250483708168801760315480283992296242900p+1)^{1} \bigr]
  • b=-36, p=37, \bigl[ \color{red}\bm{(1p+0)^{1}}, (120p+1)^{1}, (89190362184744p+1)^{1}, (5159254259946567401109982350686568p+1)^{1} \bigr]
  • b=-36, p=41, \bigl[ (98700p+1)^{1}, (4256613000p+1)^{1}, (6004375029423458255279070779470584135051000p+1)^{1} \bigr]
  • b=-36, p=43, \bigl[ (24p+1)^{1}, (151200p+1)^{1}, (67785232311070767924p+1)^{1}, (267678305210577060297251647581336p+1)^{1} \bigr]
  • b=-36, p=47, \bigl[ (36p+1)^{1}, (21905075407409014836p+1)^{1}, (650760901394333771340p+1)^{1}, (151042468762359802202784p+1)^{1} \bigr]
  • b=-35, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (8p+1)^{1} \bigr]
  • b=-35, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (132p+1)^{1} \bigr]
  • b=-35, p=5, \bigl[ (2p+1)^{1}, (26526p+1)^{1} \bigr]
  • b=-35, p=7, \bigl[ (4p+1)^{1}, (744p+1)^{1}, (1690p+1)^{1} \bigr]
  • b=-35, p=11, \bigl[ (243811003467290p+1)^{1} \bigr]
  • b=-35, p=13, \bigl[ (252719482440133380p+1)^{1} \bigr]
  • b=-35, p=17, \bigl[ (18p+1)^{1}, (3048p+1)^{1}, (18230336745564914p+1)^{1} \bigr]
  • b=-35, p=19, \bigl[ (697194p+1)^{1}, (23995481346381961368p+1)^{1} \bigr]
  • b=-35, p=23, \bigl[ (2p+1)^{1}, (352514p+1)^{1}, (1034028636192284401022270p+1)^{1} \bigr]
  • b=-35, p=29, \bigl[ (539189813108p+1)^{1}, (36739488963949239373520521344p+1)^{1} \bigr]
  • b=-35, p=31, \bigl[ (762p+1)^{1}, (57265787608p+1)^{1}, (15698320745823019722845532172p+1)^{1} \bigr]
  • b=-35, p=37, \bigl[ (4p+1)^{1}, (50056p+1)^{1}, (67800474532354p+1)^{1}, (1464652474396410553292031961018p+1)^{1} \bigr]
  • b=-35, p=41, \bigl[ (2p+1)^{1}, (61750694756274021102p+1)^{1}, (6534308934749646625159531400576390748p+1)^{1} \bigr]
  • b=-35, p=43, \bigl[ (4p+1)^{1}, (132402p+1)^{1}, (336365095268506p+1)^{1}, (21876698151520074p+1)^{1}, (119678506819175554164p+1)^{1} \bigr]
  • b=-35, p=47, \bigl[ (145853688p+1)^{1}, (24893589667987792680079503428p+1)^{1}, (274534588124064869392786269474p+1)^{1} \bigr]
  • b=-34, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=-34, p=3, \bigl[ (374p+1)^{1} \bigr]
  • b=-34, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (51926p+1)^{1} \bigr]
  • b=-34, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (10p+1)^{1}, (14874p+1)^{1} \bigr]
  • b=-34, p=11, \bigl[ (2p+1)^{1}, (7926464555396p+1)^{1} \bigr]
  • b=-34, p=13, \bigl[ (154614p+1)^{1}, (88720124100p+1)^{1} \bigr]
  • b=-34, p=17, \bigl[ (18p+1)^{1}, (26p+1)^{1}, (90p+1)^{1}, (1650p+1)^{1}, (6626p+1)^{1}, (276984p+1)^{1} \bigr]
  • b=-34, p=19, \bigl[ (22182200670p+1)^{1}, (447218280791952p+1)^{1} \bigr]
  • b=-34, p=23, \bigl[ (173294506812p+1)^{1}, (52204336352758975746p+1)^{1} \bigr]
  • b=-34, p=29, \bigl[ (2p+1)^{1}, (15778974p+1)^{1}, (56861883754280p+1)^{1}, (5726305840646598p+1)^{1} \bigr]
  • b=-34, p=31, \bigl[ (348p+1)^{1}, (25552623561615814423045380275200072941138p+1)^{1} \bigr]
  • b=-34, p=37, \bigl[ (100937399794936445596p+1)^{1}, (95542439327014103841871518361534p+1)^{1} \bigr]
  • b=-34, p=41, \bigl[ (2p+1)^{1}, (86660p+1)^{1}, (197006p+1)^{1}, (18132692029421887596p+1)^{1}, (242992816990224440245382p+1)^{1} \bigr]
  • b=-34, p=43, \bigl[ (4p+1)^{1}, (126p+1)^{1}, (2452p+1)^{1}, (106957118338719189401674p+1)^{1}, (1043327102439829669834667026p+1)^{1} \bigr]
  • b=-34, p=47, \bigl[ (174p+1)^{1}, (54724256424p+1)^{1}, (65338280298778902973724p+1)^{1}, (8976348507087716801393169956p+1)^{1} \bigr]
  • b=-33, p=2, \bigl[ \color{red}\bm{(1p+0)^{5}} \bigr]
  • b=-33, p=3, \bigl[ (2p+1)^{1}, (50p+1)^{1} \bigr]
  • b=-33, p=5, \bigl[ (230208p+1)^{1} \bigr]
  • b=-33, p=7, \bigl[ (4p+1)^{1}, (28p+1)^{1}, (31344p+1)^{1} \bigr]
  • b=-33, p=11, \bigl[ (2p+1)^{1}, (170p+1)^{1}, (3140364888p+1)^{1} \bigr]
  • b=-33, p=13, \bigl[ (6p+1)^{1}, (24p+1)^{1}, (1516p+1)^{1}, (255518842p+1)^{1} \bigr]
  • b=-33, p=17, \bigl[ \color{red}\bm{(1p+0)^{1}}, (7785004916p+1)^{1}, (50194069260p+1)^{1} \bigr]
  • b=-33, p=19, \bigl[ (142p+1)^{1}, (7540p+1)^{1}, (2590828p+1)^{1}, (5781084070p+1)^{1} \bigr]
  • b=-33, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (1160p+1)^{1}, (321306p+1)^{1}, (3934922p+1)^{1}, (924673484p+1)^{1} \bigr]
  • b=-33, p=29, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (26163480p+1)^{1}, (2269082172p+1)^{1}, (71669093619759764p+1)^{1} \bigr]
  • b=-33, p=31, \bigl[ (129126p+1)^{1}, (28100627960666268782546190445822367310p+1)^{1} \bigr]
  • b=-33, p=37, \bigl[ (186p+1)^{1}, (54867166p+1)^{1}, (621406080p+1)^{1}, (378848777065970268355524794044p+1)^{1} \bigr]
  • b=-33, p=41, \bigl[ (16239131408993664350p+1)^{1}, (195642006516822005850451400179699663550p+1)^{1} \bigr]
  • b=-33, p=43, \bigl[ (4p+1)^{1}, (22p+1)^{1}, (12694p+1)^{1}, (557309385432p+1)^{1}, (63113665290498526644677490895215047932p+1)^{1} \bigr]
  • b=-33, p=47, \bigl[ (6p+1)^{1}, (174p+1)^{1}, (63400364622957923369914011982855316174682683833304096826152640p+1)^{1} \bigr]
  • b=-32, p=2, \bigl[ \color{magenta}\bm{(15p+1)^{1}} \bigr]
  • b=-32, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (110p+1)^{1} \bigr]
  • b=-32, p=5, \bigl[ (50p+1)^{1}, (810p+1)^{1} \bigr]
  • b=-32, p=7, \bigl[ (6p+1)^{1}, (40p+1)^{1}, (12310p+1)^{1} \bigr]
  • b=-32, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (62p+1)^{1}, (270p+1)^{1}, (4446590p+1)^{1} \bigr]
  • b=-32, p=13, \bigl[ (10p+1)^{1}, (210p+1)^{1}, (31530p+1)^{1}, (586450p+1)^{1} \bigr]
  • b=-32, p=17, \bigl[ (2570p+1)^{1}, (1578319002121491330p+1)^{1} \bigr]
  • b=-32, p=19, \bigl[ (120p+1)^{1}, (9198p+1)^{1}, (158491972611276270p+1)^{1} \bigr]
  • b=-32, p=23, \bigl[ (30p+1)^{1}, (121574p+1)^{1}, (81917550p+1)^{1}, (15033364572630p+1)^{1} \bigr]
  • b=-32, p=29, \bigl[ (2p+1)^{1}, (104592p+1)^{1}, (260480p+1)^{1}, (34475960507748803478753290p+1)^{1} \bigr]
  • b=-32, p=31, \bigl[ (360p+1)^{1}, (23091222p+1)^{1}, (191858168432190p+1)^{1}, (939550194940920p+1)^{1} \bigr]
  • b=-32, p=37, \bigl[ (40p+1)^{1}, (48p+1)^{1}, (696786p+1)^{1}, (760450p+1)^{1}, (21038631497240205636232927861440p+1)^{1} \bigr]
  • b=-32, p=41, \bigl[ (2p+1)^{1}, (215400456p+1)^{1}, (51849282033888720326591314483770679189202557650p+1)^{1} \bigr]
  • b=-32, p=43, \bigl[ (211270p+1)^{1}, (68186767614p+1)^{1}, (1393130427411759566916980990900272068003040p+1)^{1} \bigr]
  • b=-32, p=47, \bigl[ (6p+1)^{1}, (3526990160p+1)^{1}, (6978858350p+1)^{1}, (9825487403191430p+1)^{1}, (5009731372555151384826270p+1)^{1} \bigr]
  • b=-31, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}}, (2p+1)^{1} \bigr]
  • b=-31, p=3, \bigl[ (2p+1)^{2}, (6p+1)^{1} \bigr]
  • b=-31, p=5, \bigl[ (8p+1)^{1}, (4364p+1)^{1} \bigr]
  • b=-31, p=7, \bigl[ (1710p+1)^{1}, (10260p+1)^{1} \bigr]
  • b=-31, p=11, \bigl[ (68840p+1)^{1}, (95323910p+1)^{1} \bigr]
  • b=-31, p=13, \bigl[ (1374p+1)^{1}, (3285899611122p+1)^{1} \bigr]
  • b=-31, p=17, \bigl[ (6p+1)^{1}, (402450684861556667238p+1)^{1} \bigr]
  • b=-31, p=19, \bigl[ (10p+1)^{1}, (186610138984313827799620p+1)^{1} \bigr]
  • b=-31, p=23, \bigl[ (2p+1)^{1}, (1974541244p+1)^{1}, (12739407806743186140p+1)^{1} \bigr]
  • b=-31, p=29, \bigl[ (2p+1)^{1}, (63402p+1)^{1}, (57639375374p+1)^{1}, (105553023452297189538p+1)^{1} \bigr]
  • b=-31, p=31, \bigl[ (12p+1)^{1}, (52p+1)^{1}, (2028p+1)^{1}, (4696p+1)^{1}, (1154488918846p+1)^{1}, (87312587176408p+1)^{1} \bigr]
  • b=-31, p=37, \bigl[ (26215232082463718491954p+1)^{1}, (13190933731948595215031244934p+1)^{1} \bigr]
  • b=-31, p=41, \bigl[ (172364231373894192p+1)^{1}, (1508914418200399601824613067810632026296p+1)^{1} \bigr]
  • b=-31, p=43, \bigl[ (4p+1)^{1}, (56479168960785064437315677401185635608953657666185937768322p+1)^{1} \bigr]
  • b=-31, p=47, \bigl[ (14p+1)^{1}, (440p+1)^{1}, (6868620p+1)^{1}, (1876408861887289142548612032748194249375830389378344p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=-30, p=2, \bigl[ (14p+1)^{1} \bigr]
  • b=-30, p=3, \bigl[ (4p+1)^{1}, (22p+1)^{1} \bigr]
  • b=-30, p=5, \bigl[ (2p+1)^{1}, (14252p+1)^{1} \bigr]
  • b=-30, p=7, \bigl[ (90p+1)^{1}, (159720p+1)^{1} \bigr]
  • b=-30, p=11, \bigl[ (2p+1)^{1}, (8072p+1)^{1}, (25437408p+1)^{1} \bigr]
  • b=-30, p=13, \bigl[ (42p+1)^{1}, (15936p+1)^{1}, (349107492p+1)^{1} \bigr]
  • b=-30, p=17, \bigl[ (36p+1)^{1}, (426p+1)^{1}, (33278p+1)^{1}, (9755844038p+1)^{1} \bigr]
  • b=-30, p=19, \bigl[ (11934684p+1)^{1}, (87020989553055318p+1)^{1} \bigr]
  • b=-30, p=23, \bigl[ (2p+1)^{1}, (6452814p+1)^{1}, (86210964p+1)^{1}, (954627953642p+1)^{1} \bigr]
  • b=-30, p=29, \bigl[ (2p+1)^{1}, (75319776895532918p+1)^{1}, (59237628074273149338p+1)^{1} \bigr]
  • b=-30, p=31, \bigl[ \color{red}\bm{(1p+0)^{1}}, (132p+1)^{1}, (628p+1)^{1}, (1572p+1)^{1}, (3748p+1)^{1}, (4486649436p+1)^{1}, (3303820416756p+1)^{1} \bigr]
  • b=-30, p=37, \bigl[ (34p+1)^{1}, (256p+1)^{1}, (5140p+1)^{1}, (5341714p+1)^{1}, (6050148p+1)^{1}, (39119431066399340767350p+1)^{1} \bigr]
  • b=-30, p=41, \bigl[ (68p+1)^{1}, (1028909977552331625479326306928506081692746512586397218p+1)^{1} \bigr]
  • b=-30, p=43, \bigl[ (771804124120876869600580p+1)^{1}, (74200742831014849834494068234576110p+1)^{1} \bigr]
  • b=-30, p=47, \bigl[ (6p+1)^{1}, (49965675628842341520006p+1)^{1}, (2745891434422000637438866279931616741354p+1)^{1} \bigr]
  • b=-29, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-29, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (90p+1)^{1} \bigr]
  • b=-29, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (6p+1)^{1}, (80p+1)^{1} \bigr]
  • b=-29, p=7, \bigl[ (82142268p+1)^{1} \bigr]
  • b=-29, p=11, \bigl[ (510762p+1)^{1}, (6580406p+1)^{1} \bigr]
  • b=-29, p=13, \bigl[ (4p+1)^{1}, (262p+1)^{1}, (576p+1)^{1}, (19455282p+1)^{1} \bigr]
  • b=-29, p=17, \bigl[ (116p+1)^{1}, (228098p+1)^{1}, (1859936821118p+1)^{1} \bigr]
  • b=-29, p=19, \bigl[ (882p+1)^{1}, (638908996432395213630p+1)^{1} \bigr]
  • b=-29, p=23, \bigl[ (2p+1)^{1}, (133108871962670853245168620806p+1)^{1} \bigr]
  • b=-29, p=29, \bigl[ (8p+1)^{1}, (236724p+1)^{1}, (327169788p+1)^{1}, (194471168231605003008p+1)^{1} \bigr]
  • b=-29, p=31, \bigl[ (119272p+1)^{1}, (6211422136p+1)^{1}, (3261383983005765690347820p+1)^{1} \bigr]
  • b=-29, p=37, \bigl[ (34p+1)^{1}, (264p+1)^{1}, (515819879040p+1)^{1}, (4929777342146324878530025297738p+1)^{1} \bigr]
  • b=-29, p=41, \bigl[ (506p+1)^{1}, (19808p+1)^{1}, (35448p+1)^{1}, (123308p+1)^{1}, (90525476p+1)^{1}, (8538269718p+1)^{1}, (4591694520668p+1)^{1} \bigr]
  • b=-29, p=43, \bigl[ (26452690596p+1)^{1}, (47140692469962417856p+1)^{1}, (256874786458246606390152304p+1)^{1} \bigr]
  • b=-29, p=47, \bigl[ (79584196146p+1)^{1}, (29003685959834p+1)^{1}, (3155221893563850p+1)^{1}, (506854468833813272070p+1)^{1} \bigr]
  • b=-28, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{3}} \bigr]
  • b=-28, p=3, \bigl[ (252p+1)^{1} \bigr]
  • b=-28, p=5, \bigl[ (2p+1)^{1}, (10790p+1)^{1} \bigr]
  • b=-28, p=7, \bigl[ (1858p+1)^{1}, (5110p+1)^{1} \bigr]
  • b=-28, p=11, \bigl[ (2p+1)^{2}, (49146431532p+1)^{1} \bigr]
  • b=-28, p=13, \bigl[ (42p+1)^{1}, (172p+1)^{1}, (8820p+1)^{1}, (122926p+1)^{1} \bigr]
  • b=-28, p=17, \bigl[ (14p+1)^{1}, (36p+1)^{1}, (138p+1)^{1}, (518p+1)^{1}, (2676949338p+1)^{1} \bigr]
  • b=-28, p=19, \bigl[ (5686577949236675919184764p+1)^{1} \bigr]
  • b=-28, p=23, \bigl[ (5006610p+1)^{1}, (6116026980p+1)^{1}, (178254316842p+1)^{1} \bigr]
  • b=-28, p=29, \bigl[ \color{red}\bm{(1p+0)^{1}}, (1394p+1)^{1}, (37052p+1)^{1}, (876006529511845602406161998p+1)^{1} \bigr]
  • b=-28, p=31, \bigl[ (42p+1)^{1}, (2215837786p+1)^{1}, (9042639271516565395869497356p+1)^{1} \bigr]
  • b=-28, p=37, \bigl[ (27153800266p+1)^{1}, (325248344329596037293522270894850649278p+1)^{1} \bigr]
  • b=-28, p=41, \bigl[ (220704362p+1)^{1}, (4004291620559832p+1)^{1}, (122009346773643642938388131318p+1)^{1} \bigr]
  • b=-28, p=43, \bigl[ (136p+1)^{1}, (567112p+1)^{1}, (949970157468576922959203695884683981860136539596p+1)^{1} \bigr]
  • b=-28, p=47, \bigl[ (3730291904p+1)^{1}, (40261539015656p+1)^{1}, (229669175712889246422305069051893531140p+1)^{1} \bigr]
  • b=-27, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1} \bigr]
  • b=-27, p=3, \bigl[ (6p+1)^{1}, (12p+1)^{1} \bigr]
  • b=-27, p=5, \bigl[ (6p+1)^{1}, (12p+1)^{1}, (54p+1)^{1} \bigr]
  • b=-27, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1}, (78p+1)^{1}, (324p+1)^{1} \bigr]
  • b=-27, p=11, \bigl[ (6p+1)^{1}, (60p+1)^{1}, (2310p+1)^{1}, (16038p+1)^{1} \bigr]
  • b=-27, p=13, \bigl[ (6p+1)^{1}, (12p+1)^{1}, (222p+1)^{1}, (780p+1)^{1}, (30660p+1)^{1} \bigr]
  • b=-27, p=17, \bigl[ (6p+1)^{1}, (18p+1)^{1}, (36p+1)^{1}, (60p+1)^{1}, (1770p+1)^{1}, (7597638p+1)^{1} \bigr]
  • b=-27, p=19, \bigl[ (150p+1)^{1}, (162p+1)^{1}, (2838p+1)^{1}, (5364p+1)^{1}, (61174764p+1)^{1} \bigr]
  • b=-27, p=23, \bigl[ (6p+1)^{1}, (222p+1)^{1}, (396p+1)^{1}, (5766p+1)^{1}, (64194p+1)^{1}, (1023295422p+1)^{1} \bigr]
  • b=-27, p=29, \bigl[ (12p+1)^{1}, (18p+1)^{1}, (210p+1)^{1}, (4902p+1)^{1}, (9024p+1)^{1}, (47700p+1)^{1}, (185724p+1)^{1}, (1291878p+1)^{1} \bigr]
  • b=-27, p=31, \bigl[ (12p+1)^{1}, (222p+1)^{1}, (17466p+1)^{1}, (98658p+1)^{1}, (723701448p+1)^{1}, (2846420982660p+1)^{1} \bigr]
  • b=-27, p=37, \bigl[ (6p+1)^{1}, (498p+1)^{1}, (2910p+1)^{1}, (694854p+1)^{1}, (1533456p+1)^{1}, (2122680p+1)^{1}, (1738547903680536p+1)^{1} \bigr]
  • b=-27, p=41, \bigl[ (822p+1)^{1}, (57000p+1)^{1}, (976818p+1)^{1}, (3173160396p+1)^{1}, (380652501966p+1)^{1}, (6598709888526p+1)^{1} \bigr]
  • b=-27, p=43, \bigl[ (36p+1)^{1}, (630p+1)^{1}, (38405580p+1)^{1}, (660365952p+1)^{1}, (181915223094p+1)^{1}, (1908470740665913242p+1)^{1} \bigr]
  • b=-27, p=47, \bigl[ (6p+1)^{1}, (360p+1)^{1}, (5448p+1)^{1}, (32642126550p+1)^{1}, (1999008672932491824p+1)^{1}, (80817064921701923478p+1)^{1} \bigr]
  • b=-26, p=2, \bigl[ (2p+1)^{2} \bigr]
  • b=-26, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (10p+1)^{1} \bigr]
  • b=-26, p=5, \bigl[ (86p+1)^{1}, (204p+1)^{1} \bigr]
  • b=-26, p=7, \bigl[ (10p+1)^{2}, (8430p+1)^{1} \bigr]
  • b=-26, p=11, \bigl[ (12358062245750p+1)^{1} \bigr]
  • b=-26, p=13, \bigl[ (72p+1)^{1}, (496p+1)^{1}, (2946p+1)^{1}, (30544p+1)^{1} \bigr]
  • b=-26, p=17, \bigl[ (194p+1)^{1}, (294p+1)^{1}, (113840p+1)^{1}, (77397110p+1)^{1} \bigr]
  • b=-26, p=19, \bigl[ (12p+1)^{1}, (6524402778419281139922p+1)^{1} \bigr]
  • b=-26, p=23, \bigl[ (2p+1)^{1}, (50336p+1)^{1}, (16464060p+1)^{1}, (27373217981192p+1)^{1} \bigr]
  • b=-26, p=29, \bigl[ (3237188p+1)^{1}, (89414443094p+1)^{1}, (567667108012607480p+1)^{1} \bigr]
  • b=-26, p=31, \bigl[ (166p+1)^{1}, (491638471981096p+1)^{1}, (1114003632082214543088p+1)^{1} \bigr]
  • b=-26, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (1740526p+1)^{1}, (10570000534233326004731979787465544550p+1)^{1} \bigr]
  • b=-26, p=41, \bigl[ (236p+1)^{1}, (37380p+1)^{1}, (628920089766421743768350638842232354211071842p+1)^{1} \bigr]
  • b=-26, p=43, \bigl[ (15844p+1)^{1}, (8824453444755052646996782225902119837723617708562842p+1)^{1} \bigr]
  • b=-26, p=47, \bigl[ (56979674p+1)^{1}, (938572692246250128959125042360958843127715368970403244p+1)^{1} \bigr]
  • b=-25, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=-25, p=3, \bigl[ (200p+1)^{1} \bigr]
  • b=-25, p=5, \bigl[ (8p+1)^{1}, (1832p+1)^{1} \bigr]
  • b=-25, p=7, \bigl[ (33535800p+1)^{1} \bigr]
  • b=-25, p=11, \bigl[ (8p+1)^{1}, (93666448928p+1)^{1} \bigr]
  • b=-25, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (6398588638816p+1)^{1} \bigr]
  • b=-25, p=17, \bigl[ (116p+1)^{1}, (1184p+1)^{1}, (2664p+1)^{1}, (732176628p+1)^{1} \bigr]
  • b=-25, p=19, \bigl[ (257114112p+1)^{1}, (150748743432072p+1)^{1} \bigr]
  • b=-25, p=23, \bigl[ (237639710956555246110743902200p+1)^{1} \bigr]
  • b=-25, p=29, \bigl[ (46013885304424591363711524705355616400p+1)^{1} \bigr]
  • b=-25, p=31, \bigl[ (262084023160164888p+1)^{1}, (3311333984629679608128p+1)^{1} \bigr]
  • b=-25, p=37, \bigl[ (264p+1)^{1}, (1104p+1)^{1}, (13790299867464425890019820646454619404760p+1)^{1} \bigr]
  • b=-25, p=41, \bigl[ (4716p+1)^{1}, (155000p+1)^{1}, (28005019080p+1)^{1}, (1374953145188356793429243445572p+1)^{1} \bigr]
  • b=-25, p=43, \bigl[ (4p+1)^{1}, (50497403884p+1)^{1}, (3077478017282873067820566625080476858909736p+1)^{1} \bigr]
  • b=-25, p=47, \bigl[ (108p+1)^{1}, (264p+1)^{1}, (7012200366396p+1)^{1}, (19898167329792153375587304604893052579704p+1)^{1} \bigr]
  • b=-24, p=2, \bigl[ \color{magenta}\bm{(11p+1)^{1}} \bigr]
  • b=-24, p=3, \bigl[ (2p+1)^{1}, (26p+1)^{1} \bigr]
  • b=-24, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (1158p+1)^{1} \bigr]
  • b=-24, p=7, \bigl[ (26208408p+1)^{1} \bigr]
  • b=-24, p=11, \bigl[ (5533385975160p+1)^{1} \bigr]
  • b=-24, p=13, \bigl[ (10p+1)^{1}, (2554p+1)^{1}, (5910p+1)^{1}, (8070p+1)^{1} \bigr]
  • b=-24, p=17, \bigl[ (6p+1)^{1}, (596p+1)^{1}, (655581835224146p+1)^{1} \bigr]
  • b=-24, p=19, \bigl[ (352630589284263480150072p+1)^{1} \bigr]
  • b=-24, p=23, \bigl[ (4296p+1)^{1}, (978124665380833644979152p+1)^{1} \bigr]
  • b=-24, p=29, \bigl[ (2p+1)^{1}, (50p+1)^{1}, (171107316003380514313589215984320p+1)^{1} \bigr]
  • b=-24, p=31, \bigl[ (299665483321026p+1)^{1}, (849666263511568943513322p+1)^{1} \bigr]
  • b=-24, p=37, \bigl[ (4p+1)^{1}, (19584p+1)^{1}, (94259574330648p+1)^{1}, (3356270997170151562985020p+1)^{1} \bigr]
  • b=-24, p=41, \bigl[ (2p+1)^{1}, (4558888310285956811927109239866270908971226364853186p+1)^{1} \bigr]
  • b=-24, p=43, \bigl[ (4p+1)^{1}, (70p+1)^{1}, (480p+1)^{1}, (19328018688284471976887528223897403419732225930p+1)^{1} \bigr]
  • b=-24, p=47, \bigl[ (14p+1)^{1}, (470p+1)^{1}, (1025510p+1)^{1}, (4300268p+1)^{1}, (273290483534p+1)^{1}, (34628699967595250660662700p+1)^{1} \bigr]
  • b=-23, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=-23, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{2} \bigr]
  • b=-23, p=5, \bigl[ (6p+1)^{1}, (8p+1)^{1}, (42p+1)^{1} \bigr]
  • b=-23, p=7, \bigl[ (10p+1)^{1}, (96p+1)^{1}, (424p+1)^{1} \bigr]
  • b=-23, p=11, \bigl[ (3609127870886p+1)^{1} \bigr]
  • b=-23, p=13, \bigl[ (1615501160052780p+1)^{1} \bigr]
  • b=-23, p=17, \bigl[ (14p+1)^{1}, (6914p+1)^{1}, (12306460349300p+1)^{1} \bigr]
  • b=-23, p=19, \bigl[ (25990p+1)^{1}, (168178p+1)^{1}, (103700383242p+1)^{1} \bigr]
  • b=-23, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (44p+1)^{1}, (71360p+1)^{1}, (2288090p+1)^{1}, (66175184p+1)^{1} \bigr]
  • b=-23, p=29, \bigl[ (2p+1)^{1}, (37102885418p+1)^{1}, (69958471186897277401868p+1)^{1} \bigr]
  • b=-23, p=31, \bigl[ (260866p+1)^{1}, (74634699088078p+1)^{1}, (117464943597139038p+1)^{1} \bigr]
  • b=-23, p=37, \bigl[ (16p+1)^{1}, (282317418052786181316p+1)^{1}, (44007112743484642811344p+1)^{1} \bigr]
  • b=-23, p=41, \bigl[ (27668p+1)^{1}, (1076279180p+1)^{1}, (1375230120631910804961331130870498168p+1)^{1} \bigr]
  • b=-23, p=43, \bigl[ (1524251314p+1)^{1}, (529775924209940699437657936387022538752217676p+1)^{1} \bigr]
  • b=-23, p=47, \bigl[ (19321554207758556p+1)^{1}, (9789472202178766040319656173297038243758294p+1)^{1} \bigr]
  • b=-22, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-22, p=3, \bigl[ (154p+1)^{1} \bigr]
  • b=-22, p=5, \bigl[ (44814p+1)^{1} \bigr]
  • b=-22, p=7, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (12424p+1)^{1} \bigr]
  • b=-22, p=11, \bigl[ (8p+1)^{1}, (25950095546p+1)^{1} \bigr]
  • b=-22, p=13, \bigl[ (945853036398270p+1)^{1} \bigr]
  • b=-22, p=17, \bigl[ (6p+1)^{1}, (8p+1)^{1}, (7529466p+1)^{1}, (93807578p+1)^{1} \bigr]
  • b=-22, p=19, \bigl[ (1261458p+1)^{1}, (3061421192388240p+1)^{1} \bigr]
  • b=-22, p=23, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (20p+1)^{1}, (60p+1)^{1}, (84p+1)^{1}, (10673671558676630p+1)^{1} \bigr]
  • b=-22, p=29, \bigl[ (14760p+1)^{1}, (78747362p+1)^{1}, (522125592p+1)^{1}, (86265977780p+1)^{1} \bigr]
  • b=-22, p=31, \bigl[ (12p+1)^{1}, (786089320589790p+1)^{1}, (63602055839444208360p+1)^{1} \bigr]
  • b=-22, p=37, \bigl[ (4p+1)^{1}, (60p+1)^{1}, (1308p+1)^{1}, (263465498431410496p+1)^{1}, (351747392278443594p+1)^{1} \bigr]
  • b=-22, p=41, \bigl[ (2p+1)^{1}, (4477918088p+1)^{1}, (761868691448917044938731529875599341652p+1)^{1} \bigr]
  • b=-22, p=43, \bigl[ (5357707300369360677465270773728795817256204058549595634p+1)^{1} \bigr]
  • b=-22, p=47, \bigl[ (4164p+1)^{1}, (1824168036p+1)^{1}, (68433193519583829801019595356508881417465554p+1)^{1} \bigr]
  • b=-21, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, (2p+1)^{1} \bigr]
  • b=-21, p=3, \bigl[ (140p+1)^{1} \bigr]
  • b=-21, p=5, \bigl[ (37128p+1)^{1} \bigr]
  • b=-21, p=7, \bigl[ (11695380p+1)^{1} \bigr]
  • b=-21, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (552p+1)^{1}, (942048p+1)^{1} \bigr]
  • b=-21, p=13, \bigl[ (540113208878040p+1)^{1} \bigr]
  • b=-21, p=17, \bigl[ (704p+1)^{1}, (6711174655534304p+1)^{1} \bigr]
  • b=-21, p=19, \bigl[ (32088p+1)^{1}, (51986832349586484p+1)^{1} \bigr]
  • b=-21, p=23, \bigl[ (12p+1)^{1}, (20p+1)^{1}, (26p+1)^{1}, (30p+1)^{1}, (96340234219337112p+1)^{1} \bigr]
  • b=-21, p=29, \bigl[ (44p+1)^{1}, (271236399845859022689839828918588p+1)^{1} \bigr]
  • b=-21, p=31, \bigl[ (2518p+1)^{1}, (1830588706727557385082715236281098p+1)^{1} \bigr]
  • b=-21, p=37, \bigl[ (10268086066974522442092428252601421726520683080p+1)^{1} \bigr]
  • b=-21, p=41, \bigl[ (30p+1)^{1}, (43076p+1)^{1}, (828909319939460518802524214262117937622882p+1)^{1} \bigr]
  • b=-21, p=43, \bigl[ (4p+1)^{1}, (366p+1)^{1}, (2950p+1)^{1}, (3938780196p+1)^{1}, (27053686662p+1)^{1}, (11135155620391714650p+1)^{1} \bigr]
  • b=-21, p=47, \bigl[ (6p+1)^{1}, (24p+1)^{1}, (216284p+1)^{1}, (681630p+1)^{1}, (4897851666p+1)^{1}, (5629030330272122580523664594p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=-20, p=2, \bigl[ \color{magenta}\bm{(9p+1)^{1}} \bigr]
  • b=-20, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (42p+1)^{1} \bigr]
  • b=-20, p=5, \bigl[ (30476p+1)^{1} \bigr]
  • b=-20, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (118p+1)^{1}, (1504p+1)^{1} \bigr]
  • b=-20, p=11, \bigl[ (2p+1)^{1}, (38546960286p+1)^{1} \bigr]
  • b=-20, p=13, \bigl[ (160p+1)^{1}, (196p+1)^{1}, (56569896p+1)^{1} \bigr]
  • b=-20, p=17, \bigl[ (151046p+1)^{1}, (155324p+1)^{1}, (5414966p+1)^{1} \bigr]
  • b=-20, p=19, \bigl[ (5781622000p+1)^{1}, (119617226020p+1)^{1} \bigr]
  • b=-20, p=23, \bigl[ (2p+1)^{1}, (20p+1)^{1}, (24480p+1)^{1}, (142365240254619314p+1)^{1} \bigr]
  • b=-20, p=29, \bigl[ (60p+1)^{1}, (377246221905938p+1)^{1}, (4628400305347674p+1)^{1} \bigr]
  • b=-20, p=31, \bigl[ (1306p+1)^{1}, (2428p+1)^{1}, (10824731509661881304308807746p+1)^{1} \bigr]
  • b=-20, p=37, \bigl[ (4p+1)^{1}, (9958p+1)^{1}, (259703755141404p+1)^{1}, (3353108250697943081706p+1)^{1} \bigr]
  • b=-20, p=41, \bigl[ (2p+1)^{1}, (42p+1)^{1}, (20115966p+1)^{1}, (869307746p+1)^{1}, (60754876812770996558033600p+1)^{1} \bigr]
  • b=-20, p=43, \bigl[ (22p+1)^{1}, (102861317866971645611659363777435534023044152952554p+1)^{1} \bigr]
  • b=-20, p=47, \bigl[ (146p+1)^{1}, (1364p+1)^{1}, (32408553092994492550083220038478174529432641483586p+1)^{1} \bigr]
  • b=-19, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=-19, p=3, \bigl[ (2p+1)^{3} \bigr]
  • b=-19, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (450p+1)^{1} \bigr]
  • b=-19, p=7, \bigl[ (28p+1)^{1}, (32410p+1)^{1} \bigr]
  • b=-19, p=11, \bigl[ (2p+1)^{1}, (23021790296p+1)^{1} \bigr]
  • b=-19, p=13, \bigl[ (10p+1)^{1}, (24p+1)^{1}, (13540p+1)^{1}, (22410p+1)^{1} \bigr]
  • b=-19, p=17, \bigl[ (16118784875837653488p+1)^{1} \bigr]
  • b=-19, p=19, \bigl[ (5700p+1)^{1}, (55222p+1)^{1}, (45818008480p+1)^{1} \bigr]
  • b=-19, p=23, \bigl[ (2p+1)^{1}, (30p+1)^{1}, (110p+1)^{1}, (6818784099495310476p+1)^{1} \bigr]
  • b=-19, p=29, \bigl[ (3668p+1)^{1}, (23125862344244p+1)^{1}, (293156205898332p+1)^{1} \bigr]
  • b=-19, p=31, \bigl[ (48486292p+1)^{1}, (462755205436p+1)^{1}, (327548991587430p+1)^{1} \bigr]
  • b=-19, p=37, \bigl[ (278388643947587040669200754395183567419390668p+1)^{1} \bigr]
  • b=-19, p=41, \bigl[ (2p+1)^{1}, (89052p+1)^{1}, (108038374412883975529868065020723754385198p+1)^{1} \bigr]
  • b=-19, p=43, \bigl[ (64p+1)^{1}, (1060414p+1)^{1}, (1292529947624420730p+1)^{1}, (1615277674168136971542p+1)^{1} \bigr]
  • b=-19, p=47, \bigl[ (6p+1)^{1}, (236p+1)^{1}, (296783214p+1)^{1}, (30684478811472253320271282010182466319938p+1)^{1} \bigr]
  • b=-18, p=2, \bigl[ (8p+1)^{1} \bigr]
  • b=-18, p=3, \bigl[ (102p+1)^{1} \bigr]
  • b=-18, p=5, \bigl[ (2p+1)^{1}, (1808p+1)^{1} \bigr]
  • b=-18, p=7, \bigl[ (4603158p+1)^{1} \bigr]
  • b=-18, p=11, \bigl[ (48800p+1)^{1}, (572846p+1)^{1} \bigr]
  • b=-18, p=13, \bigl[ (10p+1)^{1}, (160p+1)^{1}, (309244680p+1)^{1} \bigr]
  • b=-18, p=17, \bigl[ (8p+1)^{1}, (26p+1)^{1}, (111507934433880p+1)^{1} \bigr]
  • b=-18, p=19, \bigl[ \color{red}\bm{(1p+0)^{1}}, (103256355934587793608p+1)^{1} \bigr]
  • b=-18, p=23, \bigl[ (170132067766640567307365622p+1)^{1} \bigr]
  • b=-18, p=29, \bigl[ (2p+1)^{1}, (77785569821525219265423446461472p+1)^{1} \bigr]
  • b=-18, p=31, \bigl[ (46p+1)^{1}, (2278p+1)^{1}, (13803423950257226896408384998p+1)^{1} \bigr]
  • b=-18, p=37, \bigl[ (34p+1)^{1}, (31484850370871337166744723280530722412624p+1)^{1} \bigr]
  • b=-18, p=41, \bigl[ (2p+1)^{1}, (4106p+1)^{1}, (106203890p+1)^{1}, (609700272p+1)^{1}, (2469035027073357001496p+1)^{1} \bigr]
  • b=-18, p=43, \bigl[ (119296800p+1)^{1}, (13894312446p+1)^{1}, (378523543053832265250358447824p+1)^{1} \bigr]
  • b=-18, p=47, \bigl[ (9960p+1)^{1}, (27374664p+1)^{1}, (184991383893360584211679525776490424069046p+1)^{1} \bigr]
  • b=-17, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}} \bigr]
  • b=-17, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (4p+1)^{1} \bigr]
  • b=-17, p=5, \bigl[ (2p+1)^{1}, (14p+1)^{1}, (20p+1)^{1} \bigr]
  • b=-17, p=7, \bigl[ (3256656p+1)^{1} \bigr]
  • b=-17, p=11, \bigl[ (2p+1)^{1}, (86p+1)^{1}, (7946852p+1)^{1} \bigr]
  • b=-17, p=13, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (5050p+1)^{1}, (153984p+1)^{1} \bigr]
  • b=-17, p=17, \bigl[ (2703399548648159360p+1)^{1} \bigr]
  • b=-17, p=19, \bigl[ (24p+1)^{1}, (82p+1)^{1}, (154p+1)^{1}, (16470p+1)^{1}, (1071198p+1)^{1} \bigr]
  • b=-17, p=23, \bigl[ (48230842755699332856422864p+1)^{1} \bigr]
  • b=-17, p=29, \bigl[ (12p+1)^{1}, (812p+1)^{1}, (100682p+1)^{1}, (621811542p+1)^{1}, (2133750140p+1)^{1} \bigr]
  • b=-17, p=31, \bigl[ (12p+1)^{1}, (1188562p+1)^{1}, (18163100467991559756144766p+1)^{1} \bigr]
  • b=-17, p=37, \bigl[ (40p+1)^{1}, (70p+1)^{1}, (4667115886p+1)^{1}, (7618387900150046780946208p+1)^{1} \bigr]
  • b=-17, p=41, \bigl[ (30p+1)^{1}, (1534616p+1)^{1}, (458488622p+1)^{1}, (1858615832346p+1)^{1}, (3429429410042p+1)^{1} \bigr]
  • b=-17, p=43, \bigl[ (190p+1)^{1}, (6491145746620p+1)^{1}, (45972448185374297570366981026674p+1)^{1} \bigr]
  • b=-17, p=47, \bigl[ (8011778643947672571479144293068900002409342617137928336p+1)^{1} \bigr]
  • b=-16, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, (2p+1)^{1} \bigr]
  • b=-16, p=3, \bigl[ (80p+1)^{1} \bigr]
  • b=-16, p=5, \bigl[ (12336p+1)^{1} \bigr]
  • b=-16, p=7, \bigl[ (2255760p+1)^{1} \bigr]
  • b=-16, p=11, \bigl[ (32p+1)^{1}, (266503856p+1)^{1} \bigr]
  • b=-16, p=13, \bigl[ (66000p+1)^{1}, (23750880p+1)^{1} \bigr]
  • b=-16, p=17, \bigl[ \color{red}\bm{(1p+0)^{1}}, (20864p+1)^{1}, (169373406048p+1)^{1} \bigr]
  • b=-16, p=19, \bigl[ (64p+1)^{1}, (7840p+1)^{1}, (1290369207408p+1)^{1} \bigr]
  • b=-16, p=23, \bigl[ (12664348227983429922241680p+1)^{1} \bigr]
  • b=-16, p=29, \bigl[ (2048p+1)^{1}, (2837248109211866201116916144p+1)^{1} \bigr]
  • b=-16, p=31, \bigl[ (9376p+1)^{1}, (121619440p+1)^{1}, (36826747754902480512p+1)^{1} \bigr]
  • b=-16, p=37, \bigl[ (567268558309205040166250385313789799834160p+1)^{1} \bigr]
  • b=-16, p=41, \bigl[ (320p+1)^{1}, (208833936p+1)^{1}, (298630832255258833051375416013472p+1)^{1} \bigr]
  • b=-16, p=43, \bigl[ (89657232p+1)^{1}, (1490282575986592p+1)^{1}, (33147518025654100636576p+1)^{1} \bigr]
  • b=-16, p=47, \bigl[ (25491648p+1)^{1}, (501964736p+1)^{1}, (95786098423856p+1)^{1}, (3858559720265448288p+1)^{1} \bigr]
  • b=-15, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-15, p=3, \bigl[ (70p+1)^{1} \bigr]
  • b=-15, p=5, \bigl[ (6p+1)^{1}, (306p+1)^{1} \bigr]
  • b=-15, p=7, \bigl[ (1525530p+1)^{1} \bigr]
  • b=-15, p=11, \bigl[ (2p+1)^{1}, (2136797396p+1)^{1} \bigr]
  • b=-15, p=13, \bigl[ (6p+1)^{1}, (118439329866p+1)^{1} \bigr]
  • b=-15, p=17, \bigl[ (8p+1)^{1}, (26p+1)^{1}, (5968403914410p+1)^{1} \bigr]
  • b=-15, p=19, \bigl[ (12p+1)^{1}, (724p+1)^{1}, (23147341492294p+1)^{1} \bigr]
  • b=-15, p=23, \bigl[ (2p+1)^{1}, (272p+1)^{1}, (3540p+1)^{1}, (35882p+1)^{1}, (154328342p+1)^{1} \bigr]
  • b=-15, p=29, \bigl[ (27550439544954610153518874069740p+1)^{1} \bigr]
  • b=-15, p=31, \bigl[ (30918p+1)^{1}, (415193590200p+1)^{1}, (470068858222188p+1)^{1} \bigr]
  • b=-15, p=37, \bigl[ (16p+1)^{1}, (160217566p+1)^{1}, (15743030292569394088548176874p+1)^{1} \bigr]
  • b=-15, p=41, \bigl[ (2p+1)^{1}, (30462089482460362572380592397247478606733826p+1)^{1} \bigr]
  • b=-15, p=43, \bigl[ (4p+1)^{1}, (911752p+1)^{1}, (128371744p+1)^{1}, (374708639704p+1)^{1}, (899175256191186p+1)^{1} \bigr]
  • b=-15, p=47, \bigl[ (62721711961849734p+1)^{1}, (8522275575020394177485626992018804p+1)^{1} \bigr]
  • b=-14, p=2, \bigl[ (6p+1)^{1} \bigr]
  • b=-14, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (20p+1)^{1} \bigr]
  • b=-14, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (14p+1)^{1}, (20p+1)^{1} \bigr]
  • b=-14, p=7, \bigl[ (1003938p+1)^{1} \bigr]
  • b=-14, p=11, \bigl[ (2p+1)^{1}, (1067079096p+1)^{1} \bigr]
  • b=-14, p=13, \bigl[ (6p+1)^{1}, (70p+1)^{1}, (562p+1)^{1}, (7740p+1)^{1} \bigr]
  • b=-14, p=17, \bigl[ (8p+1)^{1}, (872802253594710p+1)^{1} \bigr]
  • b=-14, p=19, \bigl[ (10p+1)^{1}, (1420p+1)^{1}, (4069081689492p+1)^{1} \bigr]
  • b=-14, p=23, \bigl[ (6p+1)^{1}, (42p+1)^{1}, (866196p+1)^{1}, (248508025946p+1)^{1} \bigr]
  • b=-14, p=29, \bigl[ (2p+1)^{1}, (3938656020p+1)^{1}, (589692649757531160p+1)^{1} \bigr]
  • b=-14, p=31, \bigl[ (52p+1)^{1}, (102p+1)^{1}, (5428p+1)^{1}, (241188522p+1)^{1}, (113516802606p+1)^{1} \bigr]
  • b=-14, p=37, \bigl[ (7650p+1)^{1}, (3214020232864326p+1)^{1}, (136561825292153514p+1)^{1} \bigr]
  • b=-14, p=41, \bigl[ (2p+1)^{1}, (126p+1)^{1}, (2109792p+1)^{1}, (2323488p+1)^{1}, (45093089866345667845002p+1)^{1} \bigr]
  • b=-14, p=43, \bigl[ (1584617402655272202p+1)^{1}, (437071957216669122194661696p+1)^{1} \bigr]
  • b=-14, p=47, \bigl[ (24p+1)^{1}, (36p+1)^{1}, (5809908p+1)^{1}, (2005444026275811202920170835141362066p+1)^{1} \bigr]
  • b=-13, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=-13, p=3, \bigl[ (52p+1)^{1} \bigr]
  • b=-13, p=5, \bigl[ (2p+1)^{1}, (482p+1)^{1} \bigr]
  • b=-13, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (3154p+1)^{1} \bigr]
  • b=-13, p=11, \bigl[ (11637405156p+1)^{1} \bigr]
  • b=-13, p=13, \bigl[ (1032p+1)^{1}, (1564p+1)^{1}, (6100p+1)^{1} \bigr]
  • b=-13, p=17, \bigl[ (36346285375551840p+1)^{1} \bigr]
  • b=-13, p=19, \bigl[ (5495940941261075604p+1)^{1} \bigr]
  • b=-13, p=23, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (50p+1)^{1}, (102p+1)^{1}, (3687017433726p+1)^{1} \bigr]
  • b=-13, p=29, \bigl[ (2p+1)^{1}, (60p+1)^{1}, (294716893730p+1)^{1}, (565428078852p+1)^{1} \bigr]
  • b=-13, p=31, \bigl[ (12p+1)^{1}, (88p+1)^{1}, (4704232p+1)^{1}, (528678191727212976p+1)^{1} \bigr]
  • b=-13, p=37, \bigl[ (6p+1)^{1}, (568p+1)^{1}, (4114p+1)^{1}, (41862742978p+1)^{1}, (287210569722958p+1)^{1} \bigr]
  • b=-13, p=41, \bigl[ (2p+1)^{1}, (15572p+1)^{1}, (3421940126061548p+1)^{1}, (1100277582863599370p+1)^{1} \bigr]
  • b=-13, p=43, \bigl[ (4p+1)^{1}, (292252p+1)^{1}, (186069844p+1)^{1}, (8069349040p+1)^{1}, (218395741969776p+1)^{1} \bigr]
  • b=-13, p=47, \bigl[ (10613854040p+1)^{1}, (69046345308194145073786231732291307108p+1)^{1} \bigr]
  • b=-12, p=2, \bigl[ \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=-12, p=3, \bigl[ (2p+1)^{1}, (6p+1)^{1} \bigr]
  • b=-12, p=5, \bigl[ (3828p+1)^{1} \bigr]
  • b=-12, p=7, \bigl[ (30p+1)^{1}, (1866p+1)^{1} \bigr]
  • b=-12, p=11, \bigl[ (5195862732p+1)^{1} \bigr]
  • b=-12, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1}, (2772p+1)^{1}, (17106p+1)^{1} \bigr]
  • b=-12, p=17, \bigl[ (150p+1)^{1}, (3935305481730p+1)^{1} \bigr]
  • b=-12, p=19, \bigl[ (174p+1)^{1}, (432p+1)^{1}, (47645541930p+1)^{1} \bigr]
  • b=-12, p=23, \bigl[ (36p+1)^{1}, (540p+1)^{1}, (2151723080905932p+1)^{1} \bigr]
  • b=-12, p=29, \bigl[ (48365388p+1)^{1}, (37409517846375187944p+1)^{1} \bigr]
  • b=-12, p=31, \bigl[ (40758p+1)^{1}, (5594208886582563831651666p+1)^{1} \bigr]
  • b=-12, p=37, \bigl[ (141894p+1)^{1}, (112183936374p+1)^{1}, (811451916198021540p+1)^{1} \bigr]
  • b=-12, p=41, \bigl[ (300p+1)^{1}, (41089086p+1)^{1}, (333108218112p+1)^{1}, (1169186840611590p+1)^{1} \bigr]
  • b=-12, p=43, \bigl[ (1656p+1)^{1}, (8652564p+1)^{1}, (238916760p+1)^{1}, (166923904997564342856p+1)^{1} \bigr]
  • b=-12, p=47, \bigl[ (384p+1)^{1}, (262758p+1)^{1}, (460050960p+1)^{1}, (178840785690164079611959410p+1)^{1} \bigr]
  • b=-11, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1} \bigr]
  • b=-11, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (12p+1)^{1} \bigr]
  • b=-11, p=5, \bigl[ (2684p+1)^{1} \bigr]
  • b=-11, p=7, \bigl[ (231990p+1)^{1} \bigr]
  • b=-11, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (18p+1)^{1}, (5306p+1)^{1} \bigr]
  • b=-11, p=13, \bigl[ (4p+1)^{1}, (70p+1)^{1}, (4583382p+1)^{1} \bigr]
  • b=-11, p=17, \bigl[ (4218p+1)^{1}, (15576p+1)^{1}, (130490p+1)^{1} \bigr]
  • b=-11, p=19, \bigl[ (10p+1)^{1}, (12p+1)^{1}, (4410p+1)^{1}, (73191382p+1)^{1} \bigr]
  • b=-11, p=23, \bigl[ (2p+1)^{1}, (44p+1)^{1}, (10494p+1)^{1}, (282321971462p+1)^{1} \bigr]
  • b=-11, p=29, \bigl[ (2p+1)^{1}, (378607144118p+1)^{1}, (7036712566928p+1)^{1} \bigr]
  • b=-11, p=31, \bigl[ (10p+1)^{1}, (42p+1)^{1}, (348p+1)^{1}, (118016927046939740362p+1)^{1} \bigr]
  • b=-11, p=37, \bigl[ (72746331730811800p+1)^{1}, (284533599510493540p+1)^{1} \bigr]
  • b=-11, p=41, \bigl[ (17356782p+1)^{1}, (29662199328p+1)^{1}, (11692159114147813142p+1)^{1} \bigr]
  • b=-11, p=43, \bigl[ (124p+1)^{1}, (218909281979986364895039707723185464862p+1)^{1} \bigr]
  • b=-11, p=47, \bigl[ (17964p+1)^{1}, (11692010p+1)^{1}, (555265028p+1)^{1}, (1291488262697961688988p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=-10, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=-10, p=3, \bigl[ (2p+1)^{1}, (4p+1)^{1} \bigr]
  • b=-10, p=5, \bigl[ (1818p+1)^{1} \bigr]
  • b=-10, p=7, \bigl[ (129870p+1)^{1} \bigr]
  • b=-10, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (372p+1)^{1}, (798p+1)^{1} \bigr]
  • b=-10, p=13, \bigl[ (66p+1)^{1}, (81408696p+1)^{1} \bigr]
  • b=-10, p=17, \bigl[ (6p+1)^{1}, (236p+1)^{1}, (1293754904p+1)^{1} \bigr]
  • b=-10, p=19, \bigl[ (47846889952153110p+1)^{1} \bigr]
  • b=-10, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (110p+1)^{1}, (23904225412692p+1)^{1} \bigr]
  • b=-10, p=29, \bigl[ (2p+1)^{1}, (5313213963126295095903512p+1)^{1} \bigr]
  • b=-10, p=31, \bigl[ (29325513196480938416422287390p+1)^{1} \bigr]
  • b=-10, p=37, \bigl[ (196p+1)^{1}, (11422974965796p+1)^{1}, (8015063440903954p+1)^{1} \bigr]
  • b=-10, p=41, \bigl[ (65134214180396756p+1)^{1}, (83029117800147780422p+1)^{1} \bigr]
  • b=-10, p=43, \bigl[ (1325800p+1)^{1}, (50758150p+1)^{1}, (169909687362135296482680p+1)^{1} \bigr]
  • b=-10, p=47, \bigl[ (134p+1)^{1}, (103299310597778p+1)^{1}, (6324738404449766101523658p+1)^{1} \bigr]
  • b=-9, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}} \bigr]
  • b=-9, p=3, \bigl[ (24p+1)^{1} \bigr]
  • b=-9, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (236p+1)^{1} \bigr]
  • b=-9, p=7, \bigl[ (4p+1)^{1}, (2356p+1)^{1} \bigr]
  • b=-9, p=11, \bigl[ (500p+1)^{1}, (51860p+1)^{1} \bigr]
  • b=-9, p=13, \bigl[ (4p+1)^{1}, (368921020p+1)^{1} \bigr]
  • b=-9, p=17, \bigl[ (56256p+1)^{1}, (102578304p+1)^{1} \bigr]
  • b=-9, p=19, \bigl[ (279028p+1)^{1}, (1341073588p+1)^{1} \bigr]
  • b=-9, p=23, \bigl[ (545804p+1)^{1}, (3069624809900p+1)^{1} \bigr]
  • b=-9, p=29, \bigl[ (428p+1)^{1}, (1308452678156172431828p+1)^{1} \bigr]
  • b=-9, p=31, \bigl[ (45284160p+1)^{1}, (92279328p+1)^{1}, (306465768p+1)^{1} \bigr]
  • b=-9, p=37, \bigl[ (4p+1)^{1}, (25780p+1)^{1}, (3855669183821754615443016p+1)^{1} \bigr]
  • b=-9, p=41, \bigl[ (50948p+1)^{1}, (2701656p+1)^{1}, (14022773366271139289396p+1)^{1} \bigr]
  • b=-9, p=43, \bigl[ (4p+1)^{1}, (10944p+1)^{1}, (61429900p+1)^{1}, (1290079584p+1)^{1}, (21005579256p+1)^{1} \bigr]
  • b=-9, p=47, \bigl[ (11996567016p+1)^{1}, (2667750704940537569903784030624p+1)^{1} \bigr]
  • b=-8, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=-8, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1} \bigr]
  • b=-8, p=5, \bigl[ (2p+1)^{1}, (66p+1)^{1} \bigr]
  • b=-8, p=7, \bigl[ (6p+1)^{1}, (774p+1)^{1} \bigr]
  • b=-8, p=11, \bigl[ (6p+1)^{1}, (62p+1)^{1}, (1896p+1)^{1} \bigr]
  • b=-8, p=13, \bigl[ (210p+1)^{1}, (1720530p+1)^{1} \bigr]
  • b=-8, p=17, \bigl[ (18p+1)^{1}, (168p+1)^{1}, (384p+1)^{1}, (2570p+1)^{1} \bigr]
  • b=-8, p=19, \bigl[ (30p+1)^{1}, (9198p+1)^{1}, (8445552p+1)^{1} \bigr]
  • b=-8, p=23, \bigl[ (6p+1)^{1}, (121574p+1)^{1}, (7336955040p+1)^{1} \bigr]
  • b=-8, p=29, \bigl[ (2p+1)^{1}, (104592p+1)^{1}, (3312992823159090p+1)^{1} \bigr]
  • b=-8, p=31, \bigl[ (17080998p+1)^{1}, (23091222p+1)^{1}, (93648720p+1)^{1} \bigr]
  • b=-8, p=37, \bigl[ (48p+1)^{1}, (90p+1)^{1}, (474p+1)^{1}, (696786p+1)^{1}, (2912844089514p+1)^{1} \bigr]
  • b=-8, p=41, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (4032p+1)^{1}, (215400456p+1)^{1}, (321812632025112p+1)^{1} \bigr]
  • b=-8, p=43, \bigl[ (24p+1)^{1}, (37013544p+1)^{1}, (68186767614p+1)^{1}, (364804737150p+1)^{1} \bigr]
  • b=-8, p=47, \bigl[ (6p+1)^{1}, (35766p+1)^{1}, (750490200p+1)^{1}, (2369131176p+1)^{1}, (3526990160p+1)^{1} \bigr]
  • b=-7, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=-7, p=3, \bigl[ (14p+1)^{1} \bigr]
  • b=-7, p=5, \bigl[ (2p+1)^{1}, (38p+1)^{1} \bigr]
  • b=-7, p=7, \bigl[ (16p+1)^{1}, (130p+1)^{1} \bigr]
  • b=-7, p=11, \bigl[ (2p+1)^{1}, (976940p+1)^{1} \bigr]
  • b=-7, p=13, \bigl[ (4p+1)^{1}, (17577832p+1)^{1} \bigr]
  • b=-7, p=17, \bigl[ (1710518485200p+1)^{1} \bigr]
  • b=-7, p=19, \bigl[ (18480p+1)^{1}, (213580878p+1)^{1} \bigr]
  • b=-7, p=23, \bigl[ (148743192065657154p+1)^{1} \bigr]
  • b=-7, p=29, \bigl[ (13878904119884395374300p+1)^{1} \bigr]
  • b=-7, p=31, \bigl[ (12p+1)^{1}, (314658p+1)^{1}, (174855062812668p+1)^{1} \bigr]
  • b=-7, p=37, \bigl[ (4p+1)^{1}, (420871483788716993979075904p+1)^{1} \bigr]
  • b=-7, p=41, \bigl[ (118278p+1)^{1}, (219512p+1)^{1}, (39908750p+1)^{1}, (1902671112p+1)^{1} \bigr]
  • b=-7, p=43, \bigl[ (22p+1)^{1}, (462p+1)^{1}, (486p+1)^{1}, (3804p+1)^{1}, (5470p+1)^{1}, (88350p+1)^{1}, (110460p+1)^{1} \bigr]
  • b=-7, p=47, \bigl[ (13945048714777403283142177443781785786p+1)^{1} \bigr]
  • b=-6, p=2, \bigl[ (2p+1)^{1} \bigr]
  • b=-6, p=3, \bigl[ (10p+1)^{1} \bigr]
  • b=-6, p=5, \bigl[ (2p+1)^{1}, (20p+1)^{1} \bigr]
  • b=-6, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (28p+1)^{1} \bigr]
  • b=-6, p=11, \bigl[ (4711650p+1)^{1} \bigr]
  • b=-6, p=13, \bigl[ (4p+1)^{1}, (72p+1)^{1}, (2890p+1)^{1} \bigr]
  • b=-6, p=17, \bigl[ (11208p+1)^{1}, (746526p+1)^{1} \bigr]
  • b=-6, p=19, \bigl[ (94p+1)^{1}, (2563879228p+1)^{1} \bigr]
  • b=-6, p=23, \bigl[ (4954700p+1)^{1}, (43043510p+1)^{1} \bigr]
  • b=-6, p=29, \bigl[ (2p+1)^{1}, (1128p+1)^{1}, (94041129772028p+1)^{1} \bigr]
  • b=-6, p=31, \bigl[ (6112642941587097453450p+1)^{1} \bigr]
  • b=-6, p=37, \bigl[ (106p+1)^{1}, (29642236066p+1)^{1}, (55534837614p+1)^{1} \bigr]
  • b=-6, p=41, \bigl[ (2p+1)^{1}, (696p+1)^{1}, (117986674726269375000980p+1)^{1} \bigr]
  • b=-6, p=43, \bigl[ (9592620665748327437386015717410p+1)^{1} \bigr]
  • b=-6, p=47, \bigl[ (11373990733208995562354210295740970p+1)^{1} \bigr]
  • b=-5, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}} \bigr]
  • b=-5, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1} \bigr]
  • b=-5, p=5, \bigl[ (104p+1)^{1} \bigr]
  • b=-5, p=7, \bigl[ (4p+1)^{1}, (64p+1)^{1} \bigr]
  • b=-5, p=11, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (480p+1)^{1} \bigr]
  • b=-5, p=13, \bigl[ (402p+1)^{1}, (2994p+1)^{1} \bigr]
  • b=-5, p=17, \bigl[ (180p+1)^{1}, (2443580p+1)^{1} \bigr]
  • b=-5, p=19, \bigl[ (40p+1)^{1}, (1032p+1)^{1}, (11212p+1)^{1} \bigr]
  • b=-5, p=23, \bigl[ (2p+1)^{1}, (1837947726654p+1)^{1} \bigr]
  • b=-5, p=29, \bigl[ (175754p+1)^{1}, (210028183578p+1)^{1} \bigr]
  • b=-5, p=31, \bigl[ (42p+1)^{1}, (684100p+1)^{1}, (906006826p+1)^{1} \bigr]
  • b=-5, p=37, \bigl[ (246p+1)^{1}, (784060p+1)^{1}, (1241085226618p+1)^{1} \bigr]
  • b=-5, p=41, \bigl[ (2p+1)^{1}, (1062p+1)^{1}, (5400p+1)^{1}, (231025039235988p+1)^{1} \bigr]
  • b=-5, p=43, \bigl[ (36p+1)^{1}, (222p+1)^{1}, (182944374p+1)^{1}, (37877789496p+1)^{1} \bigr]
  • b=-5, p=47, \bigl[ (44p+1)^{1}, (338058644p+1)^{1}, (76646212998069380p+1)^{1} \bigr]
  • b=-4, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=-4, p=3, \bigl[ (4p+1)^{1} \bigr]
  • b=-4, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (8p+1)^{1} \bigr]
  • b=-4, p=7, \bigl[ (4p+1)^{1}, (16p+1)^{1} \bigr]
  • b=-4, p=11, \bigl[ (36p+1)^{1}, (192p+1)^{1} \bigr]
  • b=-4, p=13, \bigl[ (4p+1)^{1}, (12p+1)^{1}, (124p+1)^{1} \bigr]
  • b=-4, p=17, \bigl[ (8p+1)^{1}, (56p+1)^{1}, (1548p+1)^{1} \bigr]
  • b=-4, p=19, \bigl[ (12p+1)^{1}, (24p+1)^{1}, (27648p+1)^{1} \bigr]
  • b=-4, p=23, \bigl[ (12p+1)^{1}, (44p+1)^{1}, (72p+1)^{1}, (1316p+1)^{1} \bigr]
  • b=-4, p=29, \bigl[ (3702332p+1)^{1}, (18513920p+1)^{1} \bigr]
  • b=-4, p=31, \bigl[ (180p+1)^{1}, (280p+1)^{1}, (1596p+1)^{1}, (12412p+1)^{1} \bigr]
  • b=-4, p=37, \bigl[ (4p+1)^{1}, (16p+1)^{1}, (4985976p+1)^{1}, (6264048p+1)^{1} \bigr]
  • b=-4, p=41, \bigl[ (248p+1)^{1}, (4428p+1)^{1}, (295428p+1)^{1}, (1054868p+1)^{1} \bigr]
  • b=-4, p=43, \bigl[ (4p+1)^{1}, (2364p+1)^{1}, (11632p+1)^{1}, (40912041060p+1)^{1} \bigr]
  • b=-4, p=47, \bigl[ (80p+1)^{1}, (159235044p+1)^{1}, (2994414288896p+1)^{1} \bigr]
  • b=-3, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}} \bigr]
  • b=-3, p=3, \bigl[ (2p+1)^{1} \bigr]
  • b=-3, p=5, \bigl[ (12p+1)^{1} \bigr]
  • b=-3, p=7, \bigl[ (78p+1)^{1} \bigr]
  • b=-3, p=11, \bigl[ (6p+1)^{1}, (60p+1)^{1} \bigr]
  • b=-3, p=13, \bigl[ (30660p+1)^{1} \bigr]
  • b=-3, p=17, \bigl[ (6p+1)^{1}, (18p+1)^{1}, (60p+1)^{1} \bigr]
  • b=-3, p=19, \bigl[ (150p+1)^{1}, (5364p+1)^{1} \bigr]
  • b=-3, p=23, \bigl[ (1023295422p+1)^{1} \bigr]
  • b=-3, p=29, \bigl[ (18p+1)^{1}, (210p+1)^{1}, (185724p+1)^{1} \bigr]
  • b=-3, p=31, \bigl[ (222p+1)^{1}, (723701448p+1)^{1} \bigr]
  • b=-3, p=37, \bigl[ (498p+1)^{1}, (2910p+1)^{1}, (1533456p+1)^{1} \bigr]
  • b=-3, p=41, \bigl[ (822p+1)^{1}, (6598709888526p+1)^{1} \bigr]
  • b=-3, p=43, \bigl[ (1908470740665913242p+1)^{1} \bigr]
  • b=-3, p=47, \bigl[ (360p+1)^{1}, (5448p+1)^{1}, (32642126550p+1)^{1} \bigr]
  • b=-2, p=2, \bigl[ \bigr]
  • b=-2, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}} \bigr]
  • b=-2, p=5, \bigl[ (2p+1)^{1} \bigr]
  • b=-2, p=7, \bigl[ (6p+1)^{1} \bigr]
  • b=-2, p=11, \bigl[ (62p+1)^{1} \bigr]
  • b=-2, p=13, \bigl[ (210p+1)^{1} \bigr]
  • b=-2, p=17, \bigl[ (2570p+1)^{1} \bigr]
  • b=-2, p=19, \bigl[ (9198p+1)^{1} \bigr]
  • b=-2, p=23, \bigl[ (121574p+1)^{1} \bigr]
  • b=-2, p=29, \bigl[ (2p+1)^{1}, (104592p+1)^{1} \bigr]
  • b=-2, p=31, \bigl[ (23091222p+1)^{1} \bigr]
  • b=-2, p=37, \bigl[ (48p+1)^{1}, (696786p+1)^{1} \bigr]
  • b=-2, p=41, \bigl[ (2p+1)^{1}, (215400456p+1)^{1} \bigr]
  • b=-2, p=43, \bigl[ (68186767614p+1)^{1} \bigr]
  • b=-2, p=47, \bigl[ (6p+1)^{1}, (3526990160p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=2, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=2, p=3, \bigl[ (2p+1)^{1} \bigr]
  • b=2, p=5, \bigl[ (6p+1)^{1} \bigr]
  • b=2, p=7, \bigl[ (18p+1)^{1} \bigr]
  • b=2, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1} \bigr]
  • b=2, p=13, \bigl[ (630p+1)^{1} \bigr]
  • b=2, p=17, \bigl[ (7710p+1)^{1} \bigr]
  • b=2, p=19, \bigl[ (27594p+1)^{1} \bigr]
  • b=2, p=23, \bigl[ (2p+1)^{1}, (7760p+1)^{1} \bigr]
  • b=2, p=29, \bigl[ (8p+1)^{1}, (38p+1)^{1}, (72p+1)^{1} \bigr]
  • b=2, p=31, \bigl[ (69273666p+1)^{1} \bigr]
  • b=2, p=37, \bigl[ (6p+1)^{1}, (16657248p+1)^{1} \bigr]
  • b=2, p=41, \bigl[ (326p+1)^{1}, (4012472p+1)^{1} \bigr]
  • b=2, p=43, \bigl[ (10p+1)^{1}, (226p+1)^{1}, (48834p+1)^{1} \bigr]
  • b=2, p=47, \bigl[ (50p+1)^{1}, (96p+1)^{1}, (282224p+1)^{1} \bigr]
  • b=3, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}} \bigr]
  • b=3, p=3, \bigl[ (4p+1)^{1} \bigr]
  • b=3, p=5, \bigl[ (2p+1)^{2} \bigr]
  • b=3, p=7, \bigl[ (156p+1)^{1} \bigr]
  • b=3, p=11, \bigl[ (2p+1)^{1}, (350p+1)^{1} \bigr]
  • b=3, p=13, \bigl[ (61320p+1)^{1} \bigr]
  • b=3, p=17, \bigl[ (110p+1)^{1}, (2030p+1)^{1} \bigr]
  • b=3, p=19, \bigl[ (84p+1)^{1}, (19152p+1)^{1} \bigr]
  • b=3, p=23, \bigl[ (2p+1)^{1}, (43544486p+1)^{1} \bigr]
  • b=3, p=29, \bigl[ (2p+1)^{1}, (984p+1)^{1}, (702794p+1)^{1} \bigr]
  • b=3, p=31, \bigl[ (22p+1)^{1}, (3312p+1)^{1}, (142066p+1)^{1} \bigr]
  • b=3, p=37, \bigl[ (353998p+1)^{1}, (464571046p+1)^{1} \bigr]
  • b=3, p=41, \bigl[ (2p+1)^{1}, (61632p+1)^{1}, (2120748698p+1)^{1} \bigr]
  • b=3, p=43, \bigl[ (10p+1)^{1}, (8856012717707254p+1)^{1} \bigr]
  • b=3, p=47, \bigl[ (26p+1)^{1}, (468p+1)^{1}, (108780p+1)^{1}, (2056526p+1)^{1} \bigr]
  • b=4, p=2, \bigl[ (2p+1)^{1} \bigr]
  • b=4, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1} \bigr]
  • b=4, p=5, \bigl[ (2p+1)^{1}, (6p+1)^{1} \bigr]
  • b=4, p=7, \bigl[ (6p+1)^{1}, (18p+1)^{1} \bigr]
  • b=4, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (62p+1)^{1} \bigr]
  • b=4, p=13, \bigl[ (210p+1)^{1}, (630p+1)^{1} \bigr]
  • b=4, p=17, \bigl[ (2570p+1)^{1}, (7710p+1)^{1} \bigr]
  • b=4, p=19, \bigl[ (9198p+1)^{1}, (27594p+1)^{1} \bigr]
  • b=4, p=23, \bigl[ (2p+1)^{1}, (7760p+1)^{1}, (121574p+1)^{1} \bigr]
  • b=4, p=29, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (38p+1)^{1}, (72p+1)^{1}, (104592p+1)^{1} \bigr]
  • b=4, p=31, \bigl[ (23091222p+1)^{1}, (69273666p+1)^{1} \bigr]
  • b=4, p=37, \bigl[ (6p+1)^{1}, (48p+1)^{1}, (696786p+1)^{1}, (16657248p+1)^{1} \bigr]
  • b=4, p=41, \bigl[ (2p+1)^{1}, (326p+1)^{1}, (4012472p+1)^{1}, (215400456p+1)^{1} \bigr]
  • b=4, p=43, \bigl[ (10p+1)^{1}, (226p+1)^{1}, (48834p+1)^{1}, (68186767614p+1)^{1} \bigr]
  • b=4, p=47, \bigl[ (6p+1)^{1}, (50p+1)^{1}, (96p+1)^{1}, (282224p+1)^{1}, (3526990160p+1)^{1} \bigr]
  • b=5, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=5, p=3, \bigl[ (10p+1)^{1} \bigr]
  • b=5, p=5, \bigl[ (2p+1)^{1}, (14p+1)^{1} \bigr]
  • b=5, p=7, \bigl[ (2790p+1)^{1} \bigr]
  • b=5, p=11, \bigl[ (1109730p+1)^{1} \bigr]
  • b=5, p=13, \bigl[ (23475060p+1)^{1} \bigr]
  • b=5, p=17, \bigl[ (24p+1)^{1}, (27432024p+1)^{1} \bigr]
  • b=5, p=19, \bigl[ (10p+1)^{1}, (330p+1)^{1}, (209530p+1)^{1} \bigr]
  • b=5, p=23, \bigl[ (390p+1)^{1}, (14443798320p+1)^{1} \bigr]
  • b=5, p=29, \bigl[ (2p+1)^{1}, (1230p+1)^{1}, (762965394632p+1)^{1} \bigr]
  • b=5, p=31, \bigl[ (60p+1)^{1}, (20179113176567370p+1)^{1} \bigr]
  • b=5, p=37, \bigl[ (4p+1)^{1}, (377620810p+1)^{1}, (236148142074p+1)^{1} \bigr]
  • b=5, p=41, \bigl[ (54591128p+1)^{1}, (123885479102846048p+1)^{1} \bigr]
  • b=5, p=43, \bigl[ (38244480p+1)^{1}, (4019245399972462530p+1)^{1} \bigr]
  • b=5, p=47, \bigl[ (3779482637021809499314490784990p+1)^{1} \bigr]
  • b=6, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=6, p=3, \bigl[ (14p+1)^{1} \bigr]
  • b=6, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (62p+1)^{1} \bigr]
  • b=6, p=7, \bigl[ (7998p+1)^{1} \bigr]
  • b=6, p=11, \bigl[ (2p+1)^{1}, (286796p+1)^{1} \bigr]
  • b=6, p=13, \bigl[ (264p+1)^{1}, (58530p+1)^{1} \bigr]
  • b=6, p=17, \bigl[ (14p+1)^{1}, (24p+1)^{1}, (66p+1)^{1}, (1814p+1)^{1} \bigr]
  • b=6, p=19, \bigl[ (10p+1)^{1}, (33582790852p+1)^{1} \bigr]
  • b=6, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (140p+1)^{1}, (326345430p+1)^{1} \bigr]
  • b=6, p=29, \bigl[ (254107953701992365402p+1)^{1} \bigr]
  • b=6, p=31, \bigl[ (172p+1)^{1}, (1604669063983112026p+1)^{1} \bigr]
  • b=6, p=37, \bigl[ (4p+1)^{1}, (214p+1)^{1}, (330p+1)^{1}, (69454p+1)^{1}, (9034779076p+1)^{1} \bigr]
  • b=6, p=41, \bigl[ (210930p+1)^{1}, (45240265509426766516560p+1)^{1} \bigr]
  • b=6, p=43, \bigl[ (4p+1)^{1}, (10p+1)^{1}, (171706p+1)^{1}, (24394276816975853386p+1)^{1} \bigr]
  • b=6, p=47, \bigl[ (19806624p+1)^{1}, (959805024p+1)^{1}, (379185492759918p+1)^{1} \bigr]
  • b=7, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}} \bigr]
  • b=7, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1} \bigr]
  • b=7, p=5, \bigl[ (560p+1)^{1} \bigr]
  • b=7, p=7, \bigl[ (4p+1)^{1}, (676p+1)^{1} \bigr]
  • b=7, p=11, \bigl[ (102p+1)^{1}, (26678p+1)^{1} \bigr]
  • b=7, p=13, \bigl[ (1242166800p+1)^{1} \bigr]
  • b=7, p=17, \bigl[ (824p+1)^{1}, (162801864p+1)^{1} \bigr]
  • b=7, p=19, \bigl[ (22p+1)^{1}, (238640354758p+1)^{1} \bigr]
  • b=7, p=23, \bigl[ (2p+1)^{1}, (134p+1)^{1}, (1368687973772p+1)^{1} \bigr]
  • b=7, p=29, \bigl[ (2p+1)^{1}, (4397940p+1)^{1}, (2459204240862p+1)^{1} \bigr]
  • b=7, p=31, \bigl[ (10p+1)^{1}, (682p+1)^{1}, (129002847722563368p+1)^{1} \bigr]
  • b=7, p=37, \bigl[ (6p+1)^{1}, (78p+1)^{1}, (129874192148440966702200p+1)^{1} \bigr]
  • b=7, p=41, \bigl[ (2p+1)^{1}, (500388p+1)^{1}, (106393642347050455026702p+1)^{1} \bigr]
  • b=7, p=43, \bigl[ (3860549019591832p+1)^{1}, (50989234006306480p+1)^{1} \bigr]
  • b=7, p=47, \bigl[ (291974824457930p+1)^{1}, (1354925787157841499138p+1)^{1} \bigr]
  • b=8, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=8, p=3, \bigl[ (24p+1)^{1} \bigr]
  • b=8, p=5, \bigl[ (6p+1)^{1}, (30p+1)^{1} \bigr]
  • b=8, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (18p+1)^{1}, (48p+1)^{1} \bigr]
  • b=8, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (54498p+1)^{1} \bigr]
  • b=8, p=13, \bigl[ (6p+1)^{1}, (630p+1)^{1}, (9336p+1)^{1} \bigr]
  • b=8, p=17, \bigl[ (6p+1)^{1}, (126p+1)^{1}, (654p+1)^{1}, (7710p+1)^{1} \bigr]
  • b=8, p=19, \bigl[ (1704p+1)^{1}, (27594p+1)^{1}, (63834p+1)^{1} \bigr]
  • b=8, p=23, \bigl[ (2p+1)^{1}, (7760p+1)^{1}, (437072997306p+1)^{1} \bigr]
  • b=8, p=29, \bigl[ (8p+1)^{1}, (38p+1)^{1}, (72p+1)^{1}, (144p+1)^{1}, (339921970878p+1)^{1} \bigr]
  • b=8, p=31, \bigl[ (69273666p+1)^{1}, (21252009311404938p+1)^{1} \bigr]
  • b=8, p=37, \bigl[ (6p+1)^{1}, (8694p+1)^{1}, (710688p+1)^{1}, (8622168p+1)^{1}, (16657248p+1)^{1} \bigr]
  • b=8, p=41, \bigl[ (326p+1)^{1}, (94806p+1)^{1}, (4012472p+1)^{1}, (4334689120833552p+1)^{1} \bigr]
  • b=8, p=43, \bigl[ (10p+1)^{1}, (226p+1)^{1}, (48834p+1)^{1}, (257047350349983598917666p+1)^{1} \bigr]
  • b=8, p=47, \bigl[ (50p+1)^{1}, (96p+1)^{1}, (282224p+1)^{1}, (93097410p+1)^{1}, (13759043303260824p+1)^{1} \bigr]
  • b=9, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1} \bigr]
  • b=9, p=3, \bigl[ (2p+1)^{1}, (4p+1)^{1} \bigr]
  • b=9, p=5, \bigl[ (2p+1)^{2}, (12p+1)^{1} \bigr]
  • b=9, p=7, \bigl[ (78p+1)^{1}, (156p+1)^{1} \bigr]
  • b=9, p=11, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (60p+1)^{1}, (350p+1)^{1} \bigr]
  • b=9, p=13, \bigl[ (30660p+1)^{1}, (61320p+1)^{1} \bigr]
  • b=9, p=17, \bigl[ (6p+1)^{1}, (18p+1)^{1}, (60p+1)^{1}, (110p+1)^{1}, (2030p+1)^{1} \bigr]
  • b=9, p=19, \bigl[ (84p+1)^{1}, (150p+1)^{1}, (5364p+1)^{1}, (19152p+1)^{1} \bigr]
  • b=9, p=23, \bigl[ (2p+1)^{1}, (43544486p+1)^{1}, (1023295422p+1)^{1} \bigr]
  • b=9, p=29, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (210p+1)^{1}, (984p+1)^{1}, (185724p+1)^{1}, (702794p+1)^{1} \bigr]
  • b=9, p=31, \bigl[ (22p+1)^{1}, (222p+1)^{1}, (3312p+1)^{1}, (142066p+1)^{1}, (723701448p+1)^{1} \bigr]
  • b=9, p=37, \bigl[ (498p+1)^{1}, (2910p+1)^{1}, (353998p+1)^{1}, (1533456p+1)^{1}, (464571046p+1)^{1} \bigr]
  • b=9, p=41, \bigl[ (2p+1)^{1}, (822p+1)^{1}, (61632p+1)^{1}, (2120748698p+1)^{1}, (6598709888526p+1)^{1} \bigr]
  • b=9, p=43, \bigl[ (10p+1)^{1}, (8856012717707254p+1)^{1}, (1908470740665913242p+1)^{1} \bigr]
  • b=9, p=47, \bigl[ (26p+1)^{1}, (360p+1)^{1}, (468p+1)^{1}, (5448p+1)^{1}, (108780p+1)^{1}, (2056526p+1)^{1}, (32642126550p+1)^{1} \bigr]
  • b=10, p=2, \bigl[ \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=10, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (12p+1)^{1} \bigr]
  • b=10, p=5, \bigl[ (8p+1)^{1}, (54p+1)^{1} \bigr]
  • b=10, p=7, \bigl[ (34p+1)^{1}, (664p+1)^{1} \bigr]
  • b=10, p=11, \bigl[ (1968p+1)^{1}, (46658p+1)^{1} \bigr]
  • b=10, p=13, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (20413204p+1)^{1} \bigr]
  • b=10, p=17, \bigl[ (121866p+1)^{1}, (315483668p+1)^{1} \bigr]
  • b=10, p=19, \bigl[ (58479532163742690p+1)^{1} \bigr]
  • b=10, p=23, \bigl[ (483091787439613526570p+1)^{1} \bigr]
  • b=10, p=29, \bigl[ (110p+1)^{1}, (578p+1)^{1}, (1484p+1)^{1}, (2138p+1)^{1}, (2684270324p+1)^{1} \bigr]
  • b=10, p=31, \bigl[ (90p+1)^{1}, (223978p+1)^{1}, (1849561776251309818p+1)^{1} \bigr]
  • b=10, p=37, \bigl[ (54814p+1)^{1}, (6692676p+1)^{1}, (59794440453248739676p+1)^{1} \bigr]
  • b=10, p=41, \bigl[ (2p+1)^{1}, (30p+1)^{1}, (13146p+1)^{1}, (4921066095129824481674583960p+1)^{1} \bigr]
  • b=10, p=43, \bigl[ (4p+1)^{1}, (35530p+1)^{1}, (45662947029172p+1)^{1}, (49790511985942480p+1)^{1} \bigr]
  • b=10, p=47, \bigl[ (747264p+1)^{1}, (6731125718371457978753322426355880474p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=11, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=11, p=3, \bigl[ (2p+1)^{1}, (6p+1)^{1} \bigr]
  • b=11, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (644p+1)^{1} \bigr]
  • b=11, p=7, \bigl[ (6p+1)^{1}, (6474p+1)^{1} \bigr]
  • b=11, p=11, \bigl[ (1436p+1)^{1}, (164192p+1)^{1} \bigr]
  • b=11, p=13, \bigl[ (84p+1)^{1}, (242963700p+1)^{1} \bigr]
  • b=11, p=17, \bigl[ (2973217814701728p+1)^{1} \bigr]
  • b=11, p=19, \bigl[ (321889949728497612p+1)^{1} \bigr]
  • b=11, p=23, \bigl[ (36p+1)^{1}, (1255602p+1)^{1}, (162618347010p+1)^{1} \bigr]
  • b=11, p=29, \bigl[ (18p+1)^{1}, (10458952312068909965150898p+1)^{1} \bigr]
  • b=11, p=31, \bigl[ (1618p+1)^{1}, (78340p+1)^{1}, (5082966373696847058p+1)^{1} \bigr]
  • b=11, p=37, \bigl[ (70p+1)^{1}, (996084p+1)^{1}, (3679776p+1)^{1}, (70686976186262050p+1)^{1} \bigr]
  • b=11, p=41, \bigl[ (2p+1)^{1}, (30p+1)^{1}, (660p+1)^{1}, (12420p+1)^{1}, (343712p+1)^{1}, (728450p+1)^{1}, (20491216478p+1)^{1} \bigr]
  • b=11, p=43, \bigl[ (32936244692862p+1)^{1}, (989178048641471349905015226p+1)^{1} \bigr]
  • b=11, p=47, \bigl[ (44p+1)^{1}, (482274022688408p+1)^{1}, (400134617911163629696747104p+1)^{1} \bigr]
  • b=12, p=2, \bigl[ (6p+1)^{1} \bigr]
  • b=12, p=3, \bigl[ (52p+1)^{1} \bigr]
  • b=12, p=5, \bigl[ (4524p+1)^{1} \bigr]
  • b=12, p=7, \bigl[ (94p+1)^{1}, (706p+1)^{1} \bigr]
  • b=12, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (24271008p+1)^{1} \bigr]
  • b=12, p=13, \bigl[ (36732p+1)^{1}, (1566864p+1)^{1} \bigr]
  • b=12, p=17, \bigl[ (158450p+1)^{1}, (4404516590p+1)^{1} \bigr]
  • b=12, p=19, \bigl[ (1528612437180014004p+1)^{1} \bigr]
  • b=12, p=23, \bigl[ (2p+1)^{1}, (1734402192p+1)^{1}, (13966019054p+1)^{1} \bigr]
  • b=12, p=29, \bigl[ (2p+1)^{1}, (854p+1)^{1}, (12722p+1)^{1}, (115023206499068018p+1)^{1} \bigr]
  • b=12, p=31, \bigl[ (12p+1)^{1}, (4093020p+1)^{1}, (753678322p+1)^{1}, (7554437542p+1)^{1} \bigr]
  • b=12, p=37, \bigl[ (106320p+1)^{1}, (5312450447386111529431901441820p+1)^{1} \bigr]
  • b=12, p=41, \bigl[ (2p+1)^{1}, (48241416p+1)^{1}, (2382168896595609426618782956070p+1)^{1} \bigr]
  • b=12, p=43, \bigl[ (10p+1)^{1}, (286356p+1)^{1}, (312662014p+1)^{1}, (752552519966570347985220p+1)^{1} \bigr]
  • b=12, p=47, \bigl[ (225898935978660p+1)^{1}, (95943592893056341227702299506368p+1)^{1} \bigr]
  • b=13, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=13, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (20p+1)^{1} \bigr]
  • b=13, p=5, \bigl[ (6188p+1)^{1} \bigr]
  • b=13, p=7, \bigl[ (747006p+1)^{1} \bigr]
  • b=13, p=11, \bigl[ (2p+1)^{1}, (38p+1)^{1}, (78p+1)^{1}, (1640p+1)^{1} \bigr]
  • b=13, p=13, \bigl[ (4p+1)^{1}, (20310p+1)^{1}, (138742p+1)^{1} \bigr]
  • b=13, p=17, \bigl[ (6p+1)^{1}, (26p+1)^{1}, (929321256324p+1)^{1} \bigr]
  • b=13, p=19, \bigl[ (677154p+1)^{1}, (498365263392p+1)^{1} \bigr]
  • b=13, p=23, \bigl[ (60p+1)^{1}, (109545449667362225354p+1)^{1} \bigr]
  • b=13, p=29, \bigl[ (68p+1)^{1}, (98p+1)^{1}, (122p+1)^{1}, (29173831171547340240p+1)^{1} \bigr]
  • b=13, p=31, \bigl[ (10p+1)^{1}, (36p+1)^{1}, (263564806820366561566714528p+1)^{1} \bigr]
  • b=13, p=37, \bigl[ (40p+1)^{1}, (1824207516p+1)^{1}, (115885291804p+1)^{1}, (863893087836p+1)^{1} \bigr]
  • b=13, p=41, \bigl[ (164410904042p+1)^{1}, (1415786828715838643232432856746p+1)^{1} \bigr]
  • b=13, p=43, \bigl[ (2782p+1)^{1}, (12855389388348064631970644285244132616996p+1)^{1} \bigr]
  • b=13, p=47, \bigl[ (3914p+1)^{1}, (408853968p+1)^{1}, (11367666903870409252205767432476420p+1)^{1} \bigr]
  • b=14, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, (2p+1)^{1} \bigr]
  • b=14, p=3, \bigl[ (70p+1)^{1} \bigr]
  • b=14, p=5, \bigl[ (2p+1)^{1}, (752p+1)^{1} \bigr]
  • b=14, p=7, \bigl[ (1158390p+1)^{1} \bigr]
  • b=14, p=11, \bigl[ (6p+1)^{1}, (366p+1)^{1}, (104958p+1)^{1} \bigr]
  • b=14, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (12p+1)^{1}, (2301096090p+1)^{1} \bigr]
  • b=14, p=17, \bigl[ (6p+1)^{1}, (1339513540804428p+1)^{1} \bigr]
  • b=14, p=19, \bigl[ (24195562586837710110p+1)^{1} \bigr]
  • b=14, p=23, \bigl[ (2p+1)^{1}, (20p+1)^{1}, (102p+1)^{1}, (462p+1)^{1}, (97820p+1)^{1}, (631532p+1)^{1} \bigr]
  • b=14, p=29, \bigl[ (452p+1)^{1}, (882115518p+1)^{1}, (13673467443415928p+1)^{1} \bigr]
  • b=14, p=31, \bigl[ (840744548329489667263460350902150p+1)^{1} \bigr]
  • b=14, p=37, \bigl[ (6p+1)^{1}, (3821783428p+1)^{1}, (168197518322504961042705040p+1)^{1} \bigr]
  • b=14, p=41, \bigl[ (183874817115853273584973835186677469699745450p+1)^{1} \bigr]
  • b=14, p=43, \bigl[ (4p+1)^{1}, (198631271722408510085878443280029593561924242p+1)^{1} \bigr]
  • b=14, p=47, \bigl[ (14p+1)^{1}, (78524p+1)^{1}, (450144p+1)^{1}, (522810p+1)^{1}, (955211530565735720426400174p+1)^{1} \bigr]
  • b=15, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}} \bigr]
  • b=15, p=3, \bigl[ (80p+1)^{1} \bigr]
  • b=15, p=5, \bigl[ (2p+1)^{1}, (986p+1)^{1} \bigr]
  • b=15, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (249066p+1)^{1} \bigr]
  • b=15, p=11, \bigl[ (6p+1)^{1}, (42p+1)^{1}, (212p+1)^{1}, (776p+1)^{1} \bigr]
  • b=15, p=13, \bigl[ (4p+1)^{1}, (12114p+1)^{1}, (1281166p+1)^{1} \bigr]
  • b=15, p=17, \bigl[ (61470744p+1)^{1}, (396147624p+1)^{1} \bigr]
  • b=15, p=19, \bigl[ (224848p+1)^{1}, (19507856573824p+1)^{1} \bigr]
  • b=15, p=23, \bigl[ (36p+1)^{1}, (1380p+1)^{1}, (132454876166589816p+1)^{1} \bigr]
  • b=15, p=29, \bigl[ (2p+1)^{1}, (533664688522123199099639207162p+1)^{1} \bigr]
  • b=15, p=31, \bigl[ (10p+1)^{1}, (21309777353366287581514739526730p+1)^{1} \bigr]
  • b=15, p=37, \bigl[ (6p+1)^{1}, (120p+1)^{1}, (870730p+1)^{1}, (66866769078p+1)^{1}, (801242321368570p+1)^{1} \bigr]
  • b=15, p=41, \bigl[ (205617859086p+1)^{1}, (342755978945117678487281772983502p+1)^{1} \bigr]
  • b=15, p=43, \bigl[ (619908581115822939869967045415613639394310225680p+1)^{1} \bigr]
  • b=15, p=47, \bigl[ (6p+1)^{1}, (14p+1)^{1}, (50p+1)^{1}, (134p+1)^{1}, (3914p+1)^{1}, (56512712660997277178892779441592006p+1)^{1} \bigr]
  • b=16, p=2, \bigl[ (8p+1)^{1} \bigr]
  • b=16, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (4p+1)^{1} \bigr]
  • b=16, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (6p+1)^{1}, (8p+1)^{1} \bigr]
  • b=16, p=7, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (16p+1)^{1}, (18p+1)^{1} \bigr]
  • b=16, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (36p+1)^{1}, (62p+1)^{1}, (192p+1)^{1} \bigr]
  • b=16, p=13, \bigl[ (4p+1)^{1}, (12p+1)^{1}, (124p+1)^{1}, (210p+1)^{1}, (630p+1)^{1} \bigr]
  • b=16, p=17, \bigl[ (8p+1)^{1}, (56p+1)^{1}, (1548p+1)^{1}, (2570p+1)^{1}, (7710p+1)^{1} \bigr]
  • b=16, p=19, \bigl[ (12p+1)^{1}, (24p+1)^{1}, (9198p+1)^{1}, (27594p+1)^{1}, (27648p+1)^{1} \bigr]
  • b=16, p=23, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (44p+1)^{1}, (72p+1)^{1}, (1316p+1)^{1}, (7760p+1)^{1}, (121574p+1)^{1} \bigr]
  • b=16, p=29, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (38p+1)^{1}, (72p+1)^{1}, (104592p+1)^{1}, (3702332p+1)^{1}, (18513920p+1)^{1} \bigr]
  • b=16, p=31, \bigl[ (180p+1)^{1}, (280p+1)^{1}, (1596p+1)^{1}, (12412p+1)^{1}, (23091222p+1)^{1}, (69273666p+1)^{1} \bigr]
  • b=16, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (16p+1)^{1}, (48p+1)^{1}, (696786p+1)^{1}, (4985976p+1)^{1}, (6264048p+1)^{1}, (16657248p+1)^{1} \bigr]
  • b=16, p=41, \bigl[ (2p+1)^{1}, (248p+1)^{1}, (326p+1)^{1}, (4428p+1)^{1}, (295428p+1)^{1}, (1054868p+1)^{1}, (4012472p+1)^{1}, (215400456p+1)^{1} \bigr]
  • b=16, p=43, \bigl[ (4p+1)^{1}, (10p+1)^{1}, (226p+1)^{1}, (2364p+1)^{1}, (11632p+1)^{1}, (48834p+1)^{1}, (40912041060p+1)^{1}, (68186767614p+1)^{1} \bigr]
  • b=16, p=47, \bigl[ (6p+1)^{1}, (50p+1)^{1}, (80p+1)^{1}, (96p+1)^{1}, (282224p+1)^{1}, (159235044p+1)^{1}, (3526990160p+1)^{1}, (2994414288896p+1)^{1} \bigr]
  • b=17, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=17, p=3, \bigl[ (102p+1)^{1} \bigr]
  • b=17, p=5, \bigl[ (17748p+1)^{1} \bigr]
  • b=17, p=7, \bigl[ (3663738p+1)^{1} \bigr]
  • b=17, p=11, \bigl[ (194726683566p+1)^{1} \bigr]
  • b=17, p=13, \bigl[ (16312p+1)^{1}, (224553604p+1)^{1} \bigr]
  • b=17, p=17, \bigl[ (644p+1)^{1}, (102896p+1)^{1}, (158796396p+1)^{1} \bigr]
  • b=17, p=19, \bigl[ (12p+1)^{1}, (58p+1)^{1}, (10663534p+1)^{1}, (15367038p+1)^{1} \bigr]
  • b=17, p=23, \bigl[ (2p+1)^{1}, (1154461661705569137520760p+1)^{1} \bigr]
  • b=17, p=29, \bigl[ (2p+1)^{1}, (248p+1)^{1}, (209934p+1)^{1}, (402029403471929035512p+1)^{1} \bigr]
  • b=17, p=31, \bigl[ (132p+1)^{1}, (197532p+1)^{1}, (11204537020193835546420162p+1)^{1} \bigr]
  • b=17, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (27484313636744340p+1)^{1}, (168077907600266909146p+1)^{1} \bigr]
  • b=17, p=41, \bigl[ (2p+1)^{1}, (21758p+1)^{1}, (325992p+1)^{1}, (23419929629772p+1)^{1}, (450464171879256456p+1)^{1} \bigr]
  • b=17, p=43, \bigl[ (36p+1)^{1}, (71532040096596890224p+1)^{1}, (24756810727222807165642690p+1)^{1} \bigr]
  • b=17, p=47, \bigl[ (9013250974441131642914037329702512502710510444280169378p+1)^{1} \bigr]
  • b=18, p=2, \bigl[ \color{magenta}\bm{(9p+1)^{1}} \bigr]
  • b=18, p=3, \bigl[ (2p+1)^{3} \bigr]
  • b=18, p=5, \bigl[ (8p+1)^{1}, (542p+1)^{1} \bigr]
  • b=18, p=7, \bigl[ (64p+1)^{1}, (11458p+1)^{1} \bigr]
  • b=18, p=11, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (1466p+1)^{1}, (4656p+1)^{1} \bigr]
  • b=18, p=13, \bigl[ (6p+1)^{1}, (40p+1)^{1}, (2289209176p+1)^{1} \bigr]
  • b=18, p=17, \bigl[ \color{red}\bm{(1p+0)^{1}}, (444923989362649406p+1)^{1} \bigr]
  • b=18, p=19, \bigl[ (360p+1)^{1}, (320520258410674338p+1)^{1} \bigr]
  • b=18, p=23, \bigl[ (2p+1)^{1}, (26p+1)^{1}, (324696p+1)^{1}, (904401652054146p+1)^{1} \bigr]
  • b=18, p=29, \bigl[ (51915450620958p+1)^{1}, (3406913465907314424p+1)^{1} \bigr]
  • b=18, p=31, \bigl[ (10p+1)^{1}, (418p+1)^{1}, (41187985066p+1)^{1}, (302115441836262880p+1)^{1} \bigr]
  • b=18, p=37, \bigl[ (4270p+1)^{1}, (280414001885294752964595721794121337080p+1)^{1} \bigr]
  • b=18, p=41, \bigl[ (92958p+1)^{1}, (2788806p+1)^{1}, (9630903349870633232340773738166486p+1)^{1} \bigr]
  • b=18, p=43, \bigl[ (10p+1)^{1}, (103836087284000652753784p+1)^{1}, (673761672151378219550760p+1)^{1} \bigr]
  • b=18, p=47, \bigl[ (440p+1)^{1}, (6021288357544943085064491605149793229808791352459466p+1)^{1} \bigr]
  • b=19, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, (2p+1)^{1} \bigr]
  • b=19, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (42p+1)^{1} \bigr]
  • b=19, p=5, \bigl[ (30p+1)^{1}, (182p+1)^{1} \bigr]
  • b=19, p=7, \bigl[ (100p+1)^{1}, (10120p+1)^{1} \bigr]
  • b=19, p=11, \bigl[ (9480p+1)^{1}, (5641820p+1)^{1} \bigr]
  • b=19, p=13, \bigl[ (46p+1)^{1}, (2250p+1)^{1}, (10256836p+1)^{1} \bigr]
  • b=19, p=17, \bigl[ (179106p+1)^{1}, (5882075448938p+1)^{1} \bigr]
  • b=19, p=19, \bigl[ (5784852794328402307380p+1)^{1} \bigr]
  • b=19, p=23, \bigl[ (12p+1)^{1}, (102p+1)^{1}, (717294044p+1)^{1}, (58065017514p+1)^{1} \bigr]
  • b=19, p=29, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (10241483498340p+1)^{1}, (5691347776384478p+1)^{1} \bigr]
  • b=19, p=31, \bigl[ (7847429641660768971083657470811348700p+1)^{1} \bigr]
  • b=19, p=37, \bigl[ (4p+1)^{1}, (96977691569850p+1)^{1}, (578561021877730643548137934p+1)^{1} \bigr]
  • b=19, p=41, \bigl[ (259866p+1)^{1}, (285694052p+1)^{1}, (291489464736570326880542313147270p+1)^{1} \bigr]
  • b=19, p=43, \bigl[ (439945873212783462687384p+1)^{1}, (661905784433527115671976652p+1)^{1} \bigr]
  • b=19, p=47, \bigl[ (1492962439576714348948446916507553571122192695040806434620p+1)^{1} \bigr]
  • b=20, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=20, p=3, \bigl[ (140p+1)^{1} \bigr]
  • b=20, p=5, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (50p+1)^{1} \bigr]
  • b=20, p=7, \bigl[ (4p+1)^{1}, (10p+1)^{1}, (4674p+1)^{1} \bigr]
  • b=20, p=11, \bigl[ (979904306220p+1)^{1} \bigr]
  • b=20, p=13, \bigl[ (240p+1)^{1}, (10966p+1)^{1}, (745426p+1)^{1} \bigr]
  • b=20, p=17, \bigl[ (40579566563467492260p+1)^{1} \bigr]
  • b=20, p=19, \bigl[ \color{red}\bm{(1p+0)^{1}}, (3966762322p+1)^{1}, (10141900240p+1)^{1} \bigr]
  • b=20, p=23, \bigl[ (30p+1)^{1}, (60p+1)^{1}, (2011577352083542742550p+1)^{1} \bigr]
  • b=20, p=29, \bigl[ (2p+1)^{1}, (32p+1)^{1}, (372p+1)^{1}, (4952p+1)^{1}, (16079562p+1)^{1}, (2460455332472p+1)^{1} \bigr]
  • b=20, p=31, \bigl[ (10p+1)^{1}, (360p+1)^{1}, (53100p+1)^{1}, (10968963928p+1)^{1}, (18765809044938p+1)^{1} \bigr]
  • b=20, p=37, \bigl[ (1764p+1)^{1}, (78106950p+1)^{1}, (10364686060546107925082690755734p+1)^{1} \bigr]
  • b=20, p=41, \bigl[ (18p+1)^{1}, (19243556828524373918p+1)^{1}, (484148647230439901779374200p+1)^{1} \bigr]
  • b=20, p=43, \bigl[ (8584240p+1)^{1}, (291673819653099866856597948225215830727328700p+1)^{1} \bigr]
  • b=20, p=47, \bigl[ (24p+1)^{1}, (104p+1)^{1}, (16820251824p+1)^{1}, (41083864740p+1)^{1}, (1870444636489830943284557864p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=21, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=21, p=3, \bigl[ (154p+1)^{1} \bigr]
  • b=21, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (8168p+1)^{1} \bigr]
  • b=21, p=7, \bigl[ (6p+1)^{1}, (90p+1)^{1}, (474p+1)^{1} \bigr]
  • b=21, p=11, \bigl[ (1592170457010p+1)^{1} \bigr]
  • b=21, p=13, \bigl[ (6p+1)^{1}, (14572p+1)^{1}, (39699550p+1)^{1} \bigr]
  • b=21, p=17, \bigl[ (88358654397299093808p+1)^{1} \bigr]
  • b=21, p=19, \bigl[ (634809948p+1)^{1}, (2890584559158p+1)^{1} \bigr]
  • b=21, p=23, \bigl[ (2p+1)^{1}, (852p+1)^{1}, (6081328961526229689032p+1)^{1} \bigr]
  • b=21, p=29, \bigl[ (2p+1)^{1}, (38058762p+1)^{1}, (8509079328p+1)^{1}, (23710805947988p+1)^{1} \bigr]
  • b=21, p=31, \bigl[ (146474622p+1)^{1}, (126994644852p+1)^{1}, (8792963404891548p+1)^{1} \bigr]
  • b=21, p=37, \bigl[ (840p+1)^{1}, (45453046p+1)^{1}, (216083937658202929529732929120354p+1)^{1} \bigr]
  • b=21, p=41, \bigl[ (2p+1)^{1}, (344460p+1)^{1}, (2029730p+1)^{1}, (420050862p+1)^{1}, (22305640230p+1)^{1}, (1290238613388p+1)^{1} \bigr]
  • b=21, p=43, \bigl[ (833549167925186640102525304049878755654656600734807314p+1)^{1} \bigr]
  • b=21, p=47, \bigl[ (1058p+1)^{1}, (4830p+1)^{1}, (1596650p+1)^{1}, (3373314p+1)^{1}, (112741986p+1)^{1}, (208398256132949975172216p+1)^{1} \bigr]
  • b=22, p=2, \bigl[ \color{magenta}\bm{(11p+1)^{1}} \bigr]
  • b=22, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{2} \bigr]
  • b=22, p=5, \bigl[ (49082p+1)^{1} \bigr]
  • b=22, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2424060p+1)^{1} \bigr]
  • b=22, p=11, \bigl[ (6p+1)^{1}, (32p+1)^{1}, (106951776p+1)^{1} \bigr]
  • b=22, p=13, \bigl[ (6p+1)^{1}, (154p+1)^{1}, (6546725974p+1)^{1} \bigr]
  • b=22, p=17, \bigl[ (14p+1)^{1}, (4395854p+1)^{1}, (10390280450p+1)^{1} \bigr]
  • b=22, p=19, \bigl[ (2418p+1)^{1}, (17958p+1)^{1}, (5126557684338p+1)^{1} \bigr]
  • b=22, p=23, \bigl[ (194p+1)^{1}, (57524522550p+1)^{1}, (2633702903706p+1)^{1} \bigr]
  • b=22, p=29, \bigl[ (2p+1)^{1}, (3068538p+1)^{1}, (4158380p+1)^{1}, (2208700126495365878p+1)^{1} \bigr]
  • b=22, p=31, \bigl[ (115876110p+1)^{1}, (176265174634636365824578310736p+1)^{1} \bigr]
  • b=22, p=37, \bigl[ (8398p+1)^{1}, (50999706480240p+1)^{1}, (102581673291225437954529316p+1)^{1} \bigr]
  • b=22, p=41, \bigl[ (31668510p+1)^{1}, (2241518445102p+1)^{1}, (106558746041916111943269206786p+1)^{1} \bigr]
  • b=22, p=43, \bigl[ (4p+1)^{1}, (22p+1)^{1}, (6041842p+1)^{1}, (137864871952787324919893591638090114353190p+1)^{1} \bigr]
  • b=22, p=47, \bigl[ (524334p+1)^{1}, (863778p+1)^{1}, (229880280112040p+1)^{1}, (116343832943805381253366911354p+1)^{1} \bigr]
  • b=23, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=23, p=3, \bigl[ (2p+1)^{1}, (26p+1)^{1} \bigr]
  • b=23, p=5, \bigl[ (58512p+1)^{1} \bigr]
  • b=23, p=7, \bigl[ (4p+1)^{1}, (762388p+1)^{1} \bigr]
  • b=23, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (357930036782p+1)^{1} \bigr]
  • b=23, p=13, \bigl[ (3668586p+1)^{1}, (36953346p+1)^{1} \bigr]
  • b=23, p=17, \bigl[ (6p+1)^{1}, (3661545079711930038p+1)^{1} \bigr]
  • b=23, p=19, \bigl[ (112p+1)^{1}, (3361972p+1)^{1}, (1312590453348p+1)^{1} \bigr]
  • b=23, p=23, \bigl[ (20p+1)^{1}, (56p+1)^{1}, (36156653556p+1)^{1}, (83506408344p+1)^{1} \bigr]
  • b=23, p=29, \bigl[ (8p+1)^{1}, (60p+1)^{1}, (2934p+1)^{1}, (393452p+1)^{1}, (12302089120147162182p+1)^{1} \bigr]
  • b=23, p=31, \bigl[ (1318999678342p+1)^{1}, (58637056125461925661703110p+1)^{1} \bigr]
  • b=23, p=37, \bigl[ (52044819940p+1)^{1}, (154428087625359665618636173637782780p+1)^{1} \bigr]
  • b=23, p=41, \bigl[ (2p+1)^{1}, (2854121706p+1)^{1}, (7732150553626619578222085879678992328000p+1)^{1} \bigr]
  • b=23, p=43, \bigl[ (4p+1)^{1}, (2142p+1)^{1}, (2377207391869483999786619463499426519942310158354p+1)^{1} \bigr]
  • b=23, p=47, \bigl[ (34314p+1)^{1}, (3420899550958760433514194p+1)^{1}, (37400731804750471711868941056p+1)^{1} \bigr]
  • b=24, p=2, \bigl[ (2p+1)^{2} \bigr]
  • b=24, p=3, \bigl[ (200p+1)^{1} \bigr]
  • b=24, p=5, \bigl[ (69240p+1)^{1} \bigr]
  • b=24, p=7, \bigl[ (4p+1)^{1}, (34p+1)^{1}, (4110p+1)^{1} \bigr]
  • b=24, p=11, \bigl[ (6p+1)^{1}, (668p+1)^{1}, (12215186p+1)^{1} \bigr]
  • b=24, p=13, \bigl[ (4p+1)^{1}, (504p+1)^{1}, (1224p+1)^{1}, (530404p+1)^{1} \bigr]
  • b=24, p=17, \bigl[ (18p+1)^{1}, (7092590p+1)^{1}, (20091954956p+1)^{1} \bigr]
  • b=24, p=19, \bigl[ (383294118787242913206600p+1)^{1} \bigr]
  • b=24, p=23, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (5426p+1)^{1}, (13250p+1)^{1}, (2555176758861936p+1)^{1} \bigr]
  • b=24, p=29, \bigl[ (68p+1)^{1}, (350p+1)^{1}, (38970p+1)^{1}, (703453629457372200890544p+1)^{1} \bigr]
  • b=24, p=31, \bigl[ (10p+1)^{1}, (52p+1)^{1}, (318p+1)^{1}, (1138p+1)^{1}, (1278p+1)^{1}, (130508862p+1)^{1}, (306767867650p+1)^{1} \bigr]
  • b=24, p=37, \bigl[ (100p+1)^{1}, (1320134470p+1)^{1}, (7598841799511964908388171197048130p+1)^{1} \bigr]
  • b=24, p=41, \bigl[ (68p+1)^{1}, (986891082p+1)^{1}, (123887549761896p+1)^{1}, (717523454028035991361718p+1)^{1} \bigr]
  • b=24, p=43, \bigl[ (10p+1)^{1}, (1374p+1)^{1}, (525792p+1)^{1}, (392342038419374618566043976108571809671980p+1)^{1} \bigr]
  • b=24, p=47, \bigl[ (314p+1)^{1}, (10580p+1)^{1}, (9342461885647817213787994804104501584339459046438534p+1)^{1} \bigr]
  • b=25, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1} \bigr]
  • b=25, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (10p+1)^{1} \bigr]
  • b=25, p=5, \bigl[ (2p+1)^{1}, (14p+1)^{1}, (104p+1)^{1} \bigr]
  • b=25, p=7, \bigl[ (4p+1)^{1}, (64p+1)^{1}, (2790p+1)^{1} \bigr]
  • b=25, p=11, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (480p+1)^{1}, (1109730p+1)^{1} \bigr]
  • b=25, p=13, \bigl[ (402p+1)^{1}, (2994p+1)^{1}, (23475060p+1)^{1} \bigr]
  • b=25, p=17, \bigl[ (24p+1)^{1}, (180p+1)^{1}, (2443580p+1)^{1}, (27432024p+1)^{1} \bigr]
  • b=25, p=19, \bigl[ (10p+1)^{1}, (40p+1)^{1}, (330p+1)^{1}, (1032p+1)^{1}, (11212p+1)^{1}, (209530p+1)^{1} \bigr]
  • b=25, p=23, \bigl[ (2p+1)^{1}, (390p+1)^{1}, (14443798320p+1)^{1}, (1837947726654p+1)^{1} \bigr]
  • b=25, p=29, \bigl[ (2p+1)^{1}, (1230p+1)^{1}, (175754p+1)^{1}, (210028183578p+1)^{1}, (762965394632p+1)^{1} \bigr]
  • b=25, p=31, \bigl[ (42p+1)^{1}, (60p+1)^{1}, (684100p+1)^{1}, (906006826p+1)^{1}, (20179113176567370p+1)^{1} \bigr]
  • b=25, p=37, \bigl[ (4p+1)^{1}, (246p+1)^{1}, (784060p+1)^{1}, (377620810p+1)^{1}, (236148142074p+1)^{1}, (1241085226618p+1)^{1} \bigr]
  • b=25, p=41, \bigl[ (2p+1)^{1}, (1062p+1)^{1}, (5400p+1)^{1}, (54591128p+1)^{1}, (231025039235988p+1)^{1}, (123885479102846048p+1)^{1} \bigr]
  • b=25, p=43, \bigl[ (36p+1)^{1}, (222p+1)^{1}, (38244480p+1)^{1}, (182944374p+1)^{1}, (37877789496p+1)^{1}, (4019245399972462530p+1)^{1} \bigr]
  • b=25, p=47, \bigl[ (44p+1)^{1}, (338058644p+1)^{1}, (76646212998069380p+1)^{1}, (3779482637021809499314490784990p+1)^{1} \bigr]
  • b=26, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{3}} \bigr]
  • b=26, p=3, \bigl[ (6p+1)^{1}, (12p+1)^{1} \bigr]
  • b=26, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (1728p+1)^{1} \bigr]
  • b=26, p=7, \bigl[ (45896058p+1)^{1} \bigr]
  • b=26, p=11, \bigl[ (2p+1)^{1}, (5958p+1)^{1}, (8854142p+1)^{1} \bigr]
  • b=26, p=13, \bigl[ (2135752p+1)^{1}, (274964086p+1)^{1} \bigr]
  • b=26, p=17, \bigl[ (66p+1)^{1}, (2375626872107591484p+1)^{1} \bigr]
  • b=26, p=19, \bigl[ (1758p+1)^{1}, (48307496187727348188p+1)^{1} \bigr]
  • b=26, p=23, \bigl[ (596p+1)^{1}, (47226p+1)^{1}, (66456864p+1)^{1}, (26763093020p+1)^{1} \bigr]
  • b=26, p=29, \bigl[ (2p+1)^{1}, (2529513915645143118516945582534704420p+1)^{1} \bigr]
  • b=26, p=31, \bigl[ (21792713068475842p+1)^{1}, (139700863317388509431896p+1)^{1} \bigr]
  • b=26, p=37, \bigl[ (34p+1)^{1}, (1662280p+1)^{1}, (25248549692668p+1)^{1}, (337677668437956045172624p+1)^{1} \bigr]
  • b=26, p=41, \bigl[ (2p+1)^{1}, (64242p+1)^{1}, (46078913936664394390832903021906039587529824478p+1)^{1} \bigr]
  • b=26, p=43, \bigl[ (6493001429596504409672809053274055565050415613881496676994p+1)^{1} \bigr]
  • b=26, p=47, \bigl[ (255029587211664258p+1)^{1}, (226475413950631558338306629782655747882780280p+1)^{1} \bigr]
  • b=27, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=27, p=3, \bigl[ (252p+1)^{1} \bigr]
  • b=27, p=5, \bigl[ (2p+1)^{2}, (912p+1)^{1} \bigr]
  • b=27, p=7, \bigl[ (156p+1)^{1}, (52584p+1)^{1} \bigr]
  • b=27, p=11, \bigl[ (2p+1)^{1}, (350p+1)^{1}, (219449208p+1)^{1} \bigr]
  • b=27, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (24p+1)^{1}, (504p+1)^{1}, (564p+1)^{1}, (61320p+1)^{1} \bigr]
  • b=27, p=17, \bigl[ (110p+1)^{1}, (756p+1)^{1}, (2030p+1)^{1}, (5871186588p+1)^{1} \bigr]
  • b=27, p=19, \bigl[ (12p+1)^{1}, (84p+1)^{1}, (13092p+1)^{1}, (19152p+1)^{1}, (96009432p+1)^{1} \bigr]
  • b=27, p=23, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (43544486p+1)^{1}, (107010590291907372p+1)^{1} \bigr]
  • b=27, p=29, \bigl[ (2p+1)^{1}, (984p+1)^{1}, (2580p+1)^{1}, (702794p+1)^{1}, (1111548p+1)^{1}, (5180142206064p+1)^{1} \bigr]
  • b=27, p=31, \bigl[ (22p+1)^{1}, (36p+1)^{1}, (3312p+1)^{1}, (142066p+1)^{1}, (847538769161784488542836p+1)^{1} \bigr]
  • b=27, p=37, \bigl[ (353998p+1)^{1}, (505464p+1)^{1}, (3237276p+1)^{1}, (464571046p+1)^{1}, (188171713872161196p+1)^{1} \bigr]
  • b=27, p=41, \bigl[ (2p+1)^{1}, (1248p+1)^{1}, (61632p+1)^{1}, (2120748698p+1)^{1}, (48776288232131391330769970995008p+1)^{1} \bigr]
  • b=27, p=43, \bigl[ (10p+1)^{1}, (96p+1)^{1}, (51141216p+1)^{1}, (8856012717707254p+1)^{1}, (21229106178205979323121976p+1)^{1} \bigr]
  • b=27, p=47, \bigl[ (26p+1)^{1}, (468p+1)^{1}, (108780p+1)^{1}, (2056526p+1)^{1}, (3446161608p+1)^{1}, (43216193316p+1)^{1}, (3517052637072320844p+1)^{1} \bigr]
  • b=28, p=2, \bigl[ (14p+1)^{1} \bigr]
  • b=28, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (90p+1)^{1} \bigr]
  • b=28, p=5, \bigl[ (127484p+1)^{1} \bigr]
  • b=28, p=7, \bigl[ (16p+1)^{1}, (631780p+1)^{1} \bigr]
  • b=28, p=11, \bigl[ (552458p+1)^{1}, (4595046p+1)^{1} \bigr]
  • b=28, p=13, \bigl[ (4p+1)^{1}, (349519508815672p+1)^{1} \bigr]
  • b=28, p=17, \bigl[ (8707106314829844247340p+1)^{1} \bigr]
  • b=28, p=19, \bigl[ (1109694p+1)^{1}, (289686576270473682p+1)^{1} \bigr]
  • b=28, p=23, \bigl[ (2p+1)^{1}, (65985006339715492131912122286p+1)^{1} \bigr]
  • b=28, p=29, \bigl[ (2p+1)^{1}, (20089500339223207051367759618464596462p+1)^{1} \bigr]
  • b=28, p=31, \bigl[ (348p+1)^{1}, (54058p+1)^{1}, (461536p+1)^{1}, (3360493715578764100906338p+1)^{1} \bigr]
  • b=28, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (40p+1)^{1}, (544p+1)^{1}, (976469424p+1)^{1}, (9807377870748753776147591206p+1)^{1} \bigr]
  • b=28, p=41, \bigl[ (2p+1)^{1}, (20p+1)^{1}, (19548p+1)^{1}, (792986p+1)^{1}, (109641330133707621243232153884979319868p+1)^{1} \bigr]
  • b=28, p=43, \bigl[ (84p+1)^{1}, (1396p+1)^{1}, (15912p+1)^{1}, (2463769170p+1)^{1}, (542358266634p+1)^{1}, (396932816373169568236p+1)^{1} \bigr]
  • b=28, p=47, \bigl[ (134p+1)^{1}, (513380p+1)^{1}, (452705881484p+1)^{1}, (72875866227083786p+1)^{1}, (7388594603711568907520p+1)^{1} \bigr]
  • b=29, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}}, (2p+1)^{1} \bigr]
  • b=29, p=3, \bigl[ (4p+1)^{1}, (22p+1)^{1} \bigr]
  • b=29, p=5, \bigl[ (146508p+1)^{1} \bigr]
  • b=29, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (12572796p+1)^{1} \bigr]
  • b=29, p=11, \bigl[ (2p+1)^{1}, (1722262812776p+1)^{1} \bigr]
  • b=29, p=13, \bigl[ (40p+1)^{1}, (11394p+1)^{1}, (365268622p+1)^{1} \bigr]
  • b=29, p=17, \bigl[ (230p+1)^{1}, (116348p+1)^{1}, (1970893387506p+1)^{1} \bigr]
  • b=29, p=19, \bigl[ (72982p+1)^{1}, (8273335821061253332p+1)^{1} \bigr]
  • b=29, p=23, \bigl[ (5709902664p+1)^{1}, (51040103143488493062p+1)^{1} \bigr]
  • b=29, p=29, \bigl[ (2p+1)^{1}, (578p+1)^{1}, (2912p+1)^{1}, (83744p+1)^{1}, (486602p+1)^{1}, (2011068p+1)^{1}, (18942578p+1)^{1} \bigr]
  • b=29, p=31, \bigl[ (1186p+1)^{1}, (493374930264478p+1)^{1}, (4424062387939988574906p+1)^{1} \bigr]
  • b=29, p=37, \bigl[ (4p+1)^{1}, (376p+1)^{1}, (664962138p+1)^{1}, (24308629329392585340539408578622994p+1)^{1} \bigr]
  • b=29, p=41, \bigl[ (2p+1)^{1}, (68p+1)^{1}, (10902p+1)^{1}, (6068476030170432p+1)^{1}, (30739366680917316267465864096p+1)^{1} \bigr]
  • b=29, p=43, \bigl[ (4p+1)^{1}, (324p+1)^{1}, (4968222p+1)^{1}, (1232330596272194297913941271797695062715646332p+1)^{1} \bigr]
  • b=29, p=47, \bigl[ (6p+1)^{1}, (14036p+1)^{1}, (94488p+1)^{1}, (166466p+1)^{1}, (344686453046p+1)^{1}, (2134871332470p+1)^{1}, (38943232242957446p+1)^{1} \bigr]
  • b=30, p=2, \bigl[ \color{magenta}\bm{(15p+1)^{1}} \bigr]
  • b=30, p=3, \bigl[ (2p+1)^{2}, (6p+1)^{1} \bigr]
  • b=30, p=5, \bigl[ (167586p+1)^{1} \bigr]
  • b=30, p=7, \bigl[ (10p+1)^{1}, (16p+1)^{1}, (13428p+1)^{1} \bigr]
  • b=30, p=11, \bigl[ (55531974921630p+1)^{1} \bigr]
  • b=30, p=13, \bigl[ (70p+1)^{1}, (1026p+1)^{1}, (13762p+1)^{1}, (19452p+1)^{1} \bigr]
  • b=30, p=17, \bigl[ (6p+1)^{1}, (24p+1)^{1}, (621804525107625156p+1)^{1} \bigr]
  • b=30, p=19, \bigl[ (10p+1)^{1}, (110438086582225558480060p+1)^{1} \bigr]
  • b=30, p=23, \bigl[ (12p+1)^{1}, (20p+1)^{1}, (6475092p+1)^{1}, (75373200p+1)^{1}, (428118266p+1)^{1} \bigr]
  • b=30, p=29, \bigl[ \color{red}\bm{(1p+0)^{1}}, (332p+1)^{1}, (29224104116714698529176343274429210p+1)^{1} \bigr]
  • b=30, p=31, \bigl[ (12p+1)^{1}, (35013662530p+1)^{1}, (16970363205567234639344808256p+1)^{1} \bigr]
  • b=30, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (126297737655721199741808241543085350001827357696p+1)^{1} \bigr]
  • b=30, p=41, \bigl[ (2p+1)^{1}, (71862p+1)^{1}, (73473930p+1)^{1}, (4164003303859382830832088215239985860508p+1)^{1} \bigr]
  • b=30, p=43, \bigl[ (22p+1)^{1}, (30p+1)^{1}, (248952784p+1)^{1}, (14838630262p+1)^{1}, (2013967988790p+1)^{1}, (3640009752697695574p+1)^{1} \bigr]
  • b=30, p=47, \bigl[ (24p+1)^{1}, (50p+1)^{1}, (4646p+1)^{1}, (21170p+1)^{1}, (3382659940230252196006729498962625642462548708056p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=31, p=2, \bigl[ \color{red}\bm{(1p+0)^{5}} \bigr]
  • b=31, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (110p+1)^{1} \bigr]
  • b=31, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (3470p+1)^{1} \bigr]
  • b=31, p=7, \bigl[ (131012448p+1)^{1} \bigr]
  • b=31, p=11, \bigl[ (2p+1)^{1}, (36p+1)^{1}, (56p+1)^{1}, (13666622p+1)^{1} \bigr]
  • b=31, p=13, \bigl[ (3262p+1)^{1}, (186676p+1)^{1}, (608370p+1)^{1} \bigr]
  • b=31, p=17, \bigl[ (44215915243456359173888p+1)^{1} \bigr]
  • b=31, p=19, \bigl[ (30p+1)^{1}, (750p+1)^{1}, (4672140333295303272p+1)^{1} \bigr]
  • b=31, p=23, \bigl[ (65652p+1)^{1}, (2676632p+1)^{1}, (312016293970597092p+1)^{1} \bigr]
  • b=31, p=29, \bigl[ (12p+1)^{1}, (372p+1)^{1}, (1718p+1)^{1}, (51123110p+1)^{1}, (387675128p+1)^{1}, (6529082760p+1)^{1} \bigr]
  • b=31, p=31, \bigl[ (18353950678197027912484562396837972855962080p+1)^{1} \bigr]
  • b=31, p=37, \bigl[ (4p+1)^{1}, (114p+1)^{1}, (4124265748p+1)^{1}, (6967661010p+1)^{1}, (10449370488p+1)^{1}, (1427364676296p+1)^{1} \bigr]
  • b=31, p=41, \bigl[ (2p+1)^{1}, (1036141394010565283238p+1)^{1}, (3225844008645692105918617723816572p+1)^{1} \bigr]
  • b=31, p=43, \bigl[ (3418202352p+1)^{1}, (70908271732710713102566303418571725135834785195056p+1)^{1} \bigr]
  • b=31, p=47, \bigl[ (66565386010544p+1)^{1}, (3637084776656297227586p+1)^{1}, (16465802530824261473310577490p+1)^{1} \bigr]
  • b=32, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=32, p=3, \bigl[ (2p+1)^{1}, (50p+1)^{1} \bigr]
  • b=32, p=5, \bigl[ (120p+1)^{1}, (360p+1)^{1} \bigr]
  • b=32, p=7, \bigl[ (10p+1)^{1}, (18p+1)^{1}, (17560p+1)^{1} \bigr]
  • b=32, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (80p+1)^{1}, (290p+1)^{1}, (18360p+1)^{1} \bigr]
  • b=32, p=13, \bigl[ (630p+1)^{1}, (11176549504470p+1)^{1} \bigr]
  • b=32, p=17, \bigl[ (7710p+1)^{1}, (560057223901985790p+1)^{1} \bigr]
  • b=32, p=19, \bigl[ (10p+1)^{1}, (27594p+1)^{1}, (22146250p+1)^{1}, (1596165930p+1)^{1} \bigr]
  • b=32, p=23, \bigl[ (2p+1)^{1}, (650p+1)^{1}, (7760p+1)^{1}, (175520p+1)^{1}, (115065552651480p+1)^{1} \bigr]
  • b=32, p=29, \bigl[ (8p+1)^{1}, (38p+1)^{1}, (72p+1)^{1}, (92410177854615959127242327384310p+1)^{1} \bigr]
  • b=32, p=31, \bigl[ \color{red}\bm{(1p+0)^{1}}, (10p+1)^{1}, (370p+1)^{1}, (2370p+1)^{1}, (69273666p+1)^{1}, (149997400p+1)^{1}, (585748703650p+1)^{1} \bigr]
  • b=32, p=37, \bigl[ (6p+1)^{1}, (16657248p+1)^{1}, (42915018864670p+1)^{1}, (195913745926642162193317720p+1)^{1} \bigr]
  • b=32, p=41, \bigl[ (326p+1)^{1}, (71720p+1)^{1}, (4012472p+1)^{1}, (1711496150p+1)^{1}, (89164025988019443455465340480p+1)^{1} \bigr]
  • b=32, p=43, \bigl[ (10p+1)^{1}, (40p+1)^{1}, (226p+1)^{1}, (48834p+1)^{1}, (17012010p+1)^{1}, (11973299970p+1)^{1}, (6928541621954599173136330p+1)^{1} \bigr]
  • b=32, p=47, \bigl[ (50p+1)^{1}, (96p+1)^{1}, (282224p+1)^{1}, (50879040p+1)^{1}, (1538218880p+1)^{1}, (1557495753088468209478160364829250p+1)^{1} \bigr]
  • b=33, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (8p+1)^{1} \bigr]
  • b=33, p=3, \bigl[ (374p+1)^{1} \bigr]
  • b=33, p=5, \bigl[ (6p+1)^{1}, (7890p+1)^{1} \bigr]
  • b=33, p=7, \bigl[ (60p+1)^{1}, (451926p+1)^{1} \bigr]
  • b=33, p=11, \bigl[ (192p+1)^{1}, (67953397950p+1)^{1} \bigr]
  • b=33, p=13, \bigl[ (429754p+1)^{1}, (23682335542p+1)^{1} \bigr]
  • b=33, p=17, \bigl[ (4866p+1)^{1}, (6668p+1)^{1}, (11250p+1)^{1}, (66905180p+1)^{1} \bigr]
  • b=33, p=19, \bigl[ (3999955410p+1)^{1}, (1538340689685228p+1)^{1} \bigr]
  • b=33, p=23, \bigl[ (20p+1)^{1}, (170p+1)^{1}, (63526373182973380660535244p+1)^{1} \bigr]
  • b=33, p=29, \bigl[ (122p+1)^{1}, (7101398p+1)^{1}, (160965893298692291275866484848p+1)^{1} \bigr]
  • b=33, p=31, \bigl[ (2608p+1)^{1}, (17383792620p+1)^{1}, (2743087020532567371268091566p+1)^{1} \bigr]
  • b=33, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (18340p+1)^{1}, (5735499499875580396735149501302512279558986p+1)^{1} \bigr]
  • b=33, p=41, \bigl[ (2p+1)^{1}, (62p+1)^{1}, (655712174781490170201408510976779913462819629391726908p+1)^{1} \bigr]
  • b=33, p=43, \bigl[ (150p+1)^{1}, (22276858124694180158241666377691324352658792382730362262104p+1)^{1} \bigr]
  • b=33, p=47, \bigl[ (1476870p+1)^{1}, (5563266p+1)^{1}, (23424300722488019868p+1)^{1}, (7803241124662766994047354477466p+1)^{1} \bigr]
  • b=34, p=2, \bigl[ (2p+1)^{1}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=34, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (132p+1)^{1} \bigr]
  • b=34, p=5, \bigl[ (12p+1)^{1}, (4514p+1)^{1} \bigr]
  • b=34, p=7, \bigl[ (66p+1)^{1}, (491088p+1)^{1} \bigr]
  • b=34, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4122p+1)^{1}, (387666726p+1)^{1} \bigr]
  • b=34, p=13, \bigl[ (189133573998987030p+1)^{1} \bigr]
  • b=34, p=17, \bigl[ (6p+1)^{1}, (8p+1)^{1}, (13696857473167092480p+1)^{1} \bigr]
  • b=34, p=19, \bigl[ (30304p+1)^{1}, (347198284300809191818p+1)^{1} \bigr]
  • b=34, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (2844p+1)^{1}, (516412315066933403332986p+1)^{1} \bigr]
  • b=34, p=29, \bigl[ (735624p+1)^{1}, (651131252930p+1)^{1}, (671206586301110255988p+1)^{1} \bigr]
  • b=34, p=31, \bigl[ (344356p+1)^{1}, (27390591164027377718913026697364496662p+1)^{1} \bigr]
  • b=34, p=37, \bigl[ (6p+1)^{1}, (138p+1)^{1}, (1050p+1)^{1}, (31276p+1)^{1}, (5313282538288p+1)^{1}, (37597018456415258916060p+1)^{1} \bigr]
  • b=34, p=41, \bigl[ (1398866p+1)^{1}, (7957521546735918477242950607755754781448083616261812p+1)^{1} \bigr]
  • b=34, p=43, \bigl[ (10882p+1)^{1}, (60016p+1)^{1}, (61814932p+1)^{1}, (2002393242p+1)^{1}, (1820193601552294415277998959654p+1)^{1} \bigr]
  • b=34, p=47, \bigl[ (20p+1)^{1}, (653593432677838541099283438319733850234685109297716941550308468390p+1)^{1} \bigr]
  • b=35, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(1p+1)^{2}} \bigr]
  • b=35, p=3, \bigl[ (4p+1)^{1}, (32p+1)^{1} \bigr]
  • b=35, p=5, \bigl[ (6p+1)^{1}, (9966p+1)^{1} \bigr]
  • b=35, p=7, \bigl[ (6p+1)^{1}, (6286818p+1)^{1} \bigr]
  • b=35, p=11, \bigl[ (2p+1)^{1}, (5082p+1)^{1}, (200776988p+1)^{1} \bigr]
  • b=35, p=13, \bigl[ (34p+1)^{1}, (604030100109202p+1)^{1} \bigr]
  • b=35, p=17, \bigl[ \color{red}\bm{(1p+0)^{1}}, (104706p+1)^{1}, (10147504670791130p+1)^{1} \bigr]
  • b=35, p=19, \bigl[ (6897808p+1)^{1}, (2568003544002619444p+1)^{1} \bigr]
  • b=35, p=23, \bigl[ (2233843824p+1)^{1}, (3617944464p+1)^{1}, (97586084316p+1)^{1} \bigr]
  • b=35, p=29, \bigl[ (2p+1)^{1}, (1576082p+1)^{1}, (316925033504p+1)^{1}, (24542172270603723488p+1)^{1} \bigr]
  • b=35, p=31, \bigl[ (1530p+1)^{1}, (322681266201823002p+1)^{1}, (1469166566393328446556p+1)^{1} \bigr]
  • b=35, p=37, \bigl[ (10492706444716p+1)^{1}, (42672591219448p+1)^{1}, (1751447055380668864512900p+1)^{1} \bigr]
  • b=35, p=41, \bigl[ (20p+1)^{1}, (300p+1)^{1}, (23048p+1)^{1}, (398786679298200900p+1)^{1}, (9317543040653798555714269668p+1)^{1} \bigr]
  • b=35, p=43, \bigl[ (22430082p+1)^{1}, (146998742502p+1)^{1}, (278546138345544307527712020741934440769416p+1)^{1} \bigr]
  • b=35, p=47, \bigl[ (266p+1)^{1}, (366p+1)^{1}, (10839341244273955820943040454371958831284927292883565845823424p+1)^{1} \bigr]
  • b=36, p=2, \bigl[ (18p+1)^{1} \bigr]
  • b=36, p=3, \bigl[ (10p+1)^{1}, (14p+1)^{1} \bigr]
  • b=36, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (20p+1)^{1}, (62p+1)^{1} \bigr]
  • b=36, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (4p+1)^{1}, (28p+1)^{1}, (7998p+1)^{1} \bigr]
  • b=36, p=11, \bigl[ (2p+1)^{1}, (286796p+1)^{1}, (4711650p+1)^{1} \bigr]
  • b=36, p=13, \bigl[ (4p+1)^{1}, (72p+1)^{1}, (264p+1)^{1}, (2890p+1)^{1}, (58530p+1)^{1} \bigr]
  • b=36, p=17, \bigl[ (14p+1)^{1}, (24p+1)^{1}, (66p+1)^{1}, (1814p+1)^{1}, (11208p+1)^{1}, (746526p+1)^{1} \bigr]
  • b=36, p=19, \bigl[ (10p+1)^{1}, (94p+1)^{1}, (2563879228p+1)^{1}, (33582790852p+1)^{1} \bigr]
  • b=36, p=23, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (140p+1)^{1}, (4954700p+1)^{1}, (43043510p+1)^{1}, (326345430p+1)^{1} \bigr]
  • b=36, p=29, \bigl[ (2p+1)^{1}, (1128p+1)^{1}, (94041129772028p+1)^{1}, (254107953701992365402p+1)^{1} \bigr]
  • b=36, p=31, \bigl[ (172p+1)^{1}, (1604669063983112026p+1)^{1}, (6112642941587097453450p+1)^{1} \bigr]
  • b=36, p=37, \bigl[ (4p+1)^{1}, (106p+1)^{1}, (214p+1)^{1}, (330p+1)^{1}, (69454p+1)^{1}, (9034779076p+1)^{1}, (29642236066p+1)^{1}, (55534837614p+1)^{1} \bigr]
  • b=36, p=41, \bigl[ (2p+1)^{1}, (696p+1)^{1}, (210930p+1)^{1}, (45240265509426766516560p+1)^{1}, (117986674726269375000980p+1)^{1} \bigr]
  • b=36, p=43, \bigl[ (4p+1)^{1}, (10p+1)^{1}, (171706p+1)^{1}, (24394276816975853386p+1)^{1}, (9592620665748327437386015717410p+1)^{1} \bigr]
  • b=36, p=47, \bigl[ (19806624p+1)^{1}, (959805024p+1)^{1}, (379185492759918p+1)^{1}, (11373990733208995562354210295740970p+1)^{1} \bigr]
  • b=37, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(9p+1)^{1}} \bigr]
  • b=37, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (22p+1)^{1} \bigr]
  • b=37, p=5, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (854p+1)^{1} \bigr]
  • b=37, p=7, \bigl[ (10p+1)^{1}, (5305828p+1)^{1} \bigr]
  • b=37, p=11, \bigl[ (242p+1)^{1}, (168714578928p+1)^{1} \bigr]
  • b=37, p=13, \bigl[ (520447060290772020p+1)^{1} \bigr]
  • b=37, p=17, \bigl[ (36p+1)^{1}, (6421910p+1)^{1}, (11145621031338p+1)^{1} \bigr]
  • b=37, p=19, \bigl[ (232270p+1)^{1}, (207028357345956358564p+1)^{1} \bigr]
  • b=37, p=23, \bigl[ (2p+1)^{1}, (80218692623300p+1)^{1}, (16312031186341160p+1)^{1} \bigr]
  • b=37, p=29, \bigl[ (8p+1)^{1}, (1332p+1)^{1}, (12012588p+1)^{1}, (48764732p+1)^{1}, (649144962702212912p+1)^{1} \bigr]
  • b=37, p=31, \bigl[ (12448219888363578p+1)^{1}, (9552571707276461630169909132p+1)^{1} \bigr]
  • b=37, p=37, \bigl[ (4p+1)^{1}, (54p+1)^{1}, (216p+1)^{1}, (450p+1)^{1}, (468p+1)^{1}, (275478801534p+1)^{1}, (1132525014960671351301574p+1)^{1} \bigr]
  • b=37, p=41, \bigl[ (2p+1)^{1}, (18p+1)^{1}, (72p+1)^{1}, (685948772p+1)^{1}, (2631011896617552829918750974252733139169956p+1)^{1} \bigr]
  • b=37, p=43, \bigl[ (2315730084p+1)^{1}, (18563866636674p+1)^{1}, (2241649260640652392p+1)^{1}, (2283356760270989476p+1)^{1} \bigr]
  • b=37, p=47, \bigl[ (254p+1)^{1}, (3616964906p+1)^{1}, (85211785844516p+1)^{1}, (3690396605767344283683782583190758381678p+1)^{1} \bigr]
  • b=38, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, (6p+1)^{1} \bigr]
  • b=38, p=3, \bigl[ (494p+1)^{1} \bigr]
  • b=38, p=5, \bigl[ (2p+1)^{1}, (38936p+1)^{1} \bigr]
  • b=38, p=7, \bigl[ (441759006p+1)^{1} \bigr]
  • b=38, p=11, \bigl[ (20366p+1)^{1}, (2616524408p+1)^{1} \bigr]
  • b=38, p=13, \bigl[ (6p+1)^{1}, (34p+1)^{1}, (20464958209534p+1)^{1} \bigr]
  • b=38, p=17, \bigl[ (8p+1)^{1}, (251130p+1)^{1}, (1952550657418016p+1)^{1} \bigr]
  • b=38, p=19, \bigl[ (49840p+1)^{1}, (1558120054802659015318p+1)^{1} \bigr]
  • b=38, p=23, \bigl[ (2586722019380p+1)^{1}, (42718457843872412594p+1)^{1} \bigr]
  • b=38, p=29, \bigl[ (8p+1)^{1}, (758264p+1)^{1}, (37679766834860p+1)^{1}, (1084036734107386790p+1)^{1} \bigr]
  • b=38, p=31, \bigl[ (1186p+1)^{1}, (54421986p+1)^{1}, (132170277479912775526557543585646p+1)^{1} \bigr]
  • b=38, p=37, \bigl[ \color{red}\bm{(1p+0)^{1}}, (694p+1)^{1}, (157470p+1)^{1}, (3736028402673770733141724725685147097856598p+1)^{1} \bigr]
  • b=38, p=41, \bigl[ (2p+1)^{1}, (632p+1)^{1}, (3468p+1)^{1}, (544468534152048p+1)^{1}, (5700637827992739767941351236155388p+1)^{1} \bigr]
  • b=38, p=43, \bigl[ (20019256p+1)^{1}, (67677841074p+1)^{1}, (2059345683416554p+1)^{1}, (241543538603234028683925894p+1)^{1} \bigr]
  • b=38, p=47, \bigl[ (6p+1)^{1}, (8205580829950374p+1)^{1}, (936560500913056853807176671495800268142141667215734p+1)^{1} \bigr]
  • b=39, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}}, (2p+1)^{1} \bigr]
  • b=39, p=3, \bigl[ (2p+1)^{1}, (74p+1)^{1} \bigr]
  • b=39, p=5, \bigl[ (6p+1)^{1}, (38p+1)^{1}, (80p+1)^{1} \bigr]
  • b=39, p=7, \bigl[ (408p+1)^{1}, (180576p+1)^{1} \bigr]
  • b=39, p=11, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (230p+1)^{1}, (146596772p+1)^{1} \bigr]
  • b=39, p=13, \bigl[ (10p+1)^{1}, (12p+1)^{1}, (47527174301614p+1)^{1} \bigr]
  • b=39, p=17, \bigl[ (18410p+1)^{1}, (5525374307406481730p+1)^{1} \bigr]
  • b=39, p=19, \bigl[ \color{red}\bm{(1p+0)^{1}}, (7720p+1)^{1}, (5621520298p+1)^{1}, (7905975948p+1)^{1} \bigr]
  • b=39, p=23, \bigl[ (26p+1)^{1}, (3030236p+1)^{1}, (107731674666310047386430p+1)^{1} \bigr]
  • b=39, p=29, \bigl[ (10806770p+1)^{1}, (170935155990270p+1)^{1}, (8079206543537924420p+1)^{1} \bigr]
  • b=39, p=31, \bigl[ (46p+1)^{1}, (2701959287940p+1)^{1}, (3515774802606p+1)^{1}, (1370914330959148p+1)^{1} \bigr]
  • b=39, p=37, \bigl[ (4p+1)^{1}, (114425692585032610p+1)^{1}, (83462924297286510763866403996692174p+1)^{1} \bigr]
  • b=39, p=41, \bigl[ (70376p+1)^{1}, (87723998p+1)^{1}, (8070004397184816p+1)^{1}, (32012010252271830477134276790p+1)^{1} \bigr]
  • b=39, p=43, \bigl[ (4132p+1)^{1}, (4995835554p+1)^{1}, (4176555406875743695964099536591273523194784680030p+1)^{1} \bigr]
  • b=39, p=47, \bigl[ (3339532115037190861424706p+1)^{1}, (2149668999357344130120643095641092060074243498p+1)^{1} \bigr]
  • b=40, p=2, \bigl[ (20p+1)^{1} \bigr]
  • b=40, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (182p+1)^{1} \bigr]
  • b=40, p=5, \bigl[ (525128p+1)^{1} \bigr]
  • b=40, p=7, \bigl[ (600146520p+1)^{1} \bigr]
  • b=40, p=11, \bigl[ (6p+1)^{1}, (13520p+1)^{1}, (98119542p+1)^{1} \bigr]
  • b=40, p=13, \bigl[ \color{red}\bm{(1p+0)^{1}}, (52p+1)^{1}, (532p+1)^{1}, (21743133444p+1)^{1} \bigr]
  • b=40, p=17, \bigl[ (14p+1)^{1}, (19482698p+1)^{1}, (32734853521268p+1)^{1} \bigr]
  • b=40, p=19, \bigl[ (3709553400053981106612685560p+1)^{1} \bigr]
  • b=40, p=23, \bigl[ (7844899016461984392419175027870680p+1)^{1} \bigr]
  • b=40, p=29, \bigl[ (25484560225615538815207780725022104332449160p+1)^{1} \bigr]
  • b=40, p=31, \bigl[ (36p+1)^{1}, (418p+1)^{1}, (2635170786871244571360083473476465660766p+1)^{1} \bigr]
  • b=40, p=37, \bigl[ (61270p+1)^{1}, (31008984p+1)^{1}, (5673117076p+1)^{1}, (239767779032353425503564990346p+1)^{1} \bigr]
  • b=40, p=41, \bigl[ (2p+1)^{1}, (11568p+1)^{1}, (104402p+1)^{1}, (57593190769711620190436p+1)^{1}, (760050173978545481762892p+1)^{1} \bigr]
  • b=40, p=43, \bigl[ (11073924p+1)^{1}, (436900336p+1)^{1}, (51573396633001585336166554076273087254583624404p+1)^{1} \bigr]
  • b=40, p=47, \bigl[ (27441148308p+1)^{1}, (837832086463711259796048332524406845917240211569456655086356p+1)^{1} \bigr]
Mizar/みざーMizar/みざー
  • b=41, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(1p+1)^{1}}, \color{magenta}\bm{(3p+1)^{1}} \bigr]
  • b=41, p=3, \bigl[ (574p+1)^{1} \bigr]
  • b=41, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (115856p+1)^{1} \bigr]
  • b=41, p=7, \bigl[ (6p+1)^{1}, (16175604p+1)^{1} \bigr]
  • b=41, p=11, \bigl[ (2p+1)^{1}, (12086p+1)^{1}, (409037730p+1)^{1} \bigr]
  • b=41, p=13, \bigl[ (910p+1)^{1}, (8536p+1)^{1}, (1355076042p+1)^{1} \bigr]
  • b=41, p=17, \bigl[ (11871524p+1)^{1}, (19048520654685116p+1)^{1} \bigr]
  • b=41, p=19, \bigl[ (660p+1)^{1}, (4601256408p+1)^{1}, (5273725020378p+1)^{1} \bigr]
  • b=41, p=23, \bigl[ (1236p+1)^{1}, (37687084615716p+1)^{1}, (547720397847354p+1)^{1} \bigr]
  • b=41, p=29, \bigl[ (2p+1)^{1}, (12p+1)^{1}, (8582p+1)^{1}, (2387535122p+1)^{1}, (143304687698714708912222p+1)^{1} \bigr]
  • b=41, p=31, \bigl[ (12p+1)^{1}, (179452p+1)^{1}, (97452010p+1)^{1}, (12755763878382067187303688888p+1)^{1} \bigr]
  • b=41, p=37, \bigl[ (6p+1)^{1}, (40p+1)^{1}, (490p+1)^{1}, (53144619718587649974651071725993458350340840384p+1)^{1} \bigr]
  • b=41, p=41, \bigl[ (2p+1)^{1}, (42740p+1)^{1}, (501638p+1)^{1}, (45777056368068366p+1)^{1}, (144541160724182866775451164798p+1)^{1} \bigr]
  • b=41, p=43, \bigl[ (22p+1)^{1}, (1373496044481710216987073085176803772201247491467384961973279696p+1)^{1} \bigr]
  • b=41, p=47, \bigl[ (211873717432520990p+1)^{1}, (1661578309932553580132556p+1)^{1}, (4324040965783192788675732344p+1)^{1} \bigr]
  • b=42, p=2, \bigl[ \color{magenta}\bm{(21p+1)^{1}} \bigr]
  • b=42, p=3, \bigl[ (4p+1)^{1}, (46p+1)^{1} \bigr]
  • b=42, p=5, \bigl[ (2p+1)^{1}, (36p+1)^{1}, (320p+1)^{1} \bigr]
  • b=42, p=7, \bigl[ (550p+1)^{1}, (208588p+1)^{1} \bigr]
  • b=42, p=11, \bigl[ (90p+1)^{1}, (270p+1)^{1}, (540243246p+1)^{1} \bigr]
  • b=42, p=13, \bigl[ (4p+1)^{1}, (9230694p+1)^{1}, (373301716p+1)^{1} \bigr]
  • b=42, p=17, \bigl[ (68118p+1)^{1}, (4878586099436480016p+1)^{1} \bigr]
  • b=42, p=19, \bigl[ (12p+1)^{1}, (24p+1)^{1}, (238p+1)^{1}, (78021162p+1)^{1}, (12707343634p+1)^{1} \bigr]
  • b=42, p=23, \bigl[ (2p+1)^{1}, (10495273430p+1)^{1}, (2020237995701914962630p+1)^{1} \bigr]
  • b=42, p=29, \bigl[ (932954p+1)^{1}, (3687986493861306388853699860229119148p+1)^{1} \bigr]
  • b=42, p=31, \bigl[ (840360562p+1)^{1}, (6320553257717001009285083863417274008p+1)^{1} \bigr]
  • b=42, p=37, \bigl[ (16p+1)^{1}, (90p+1)^{1}, (51902170p+1)^{1}, (65657724p+1)^{1}, (1163771198368p+1)^{1}, (1908379402997760754p+1)^{1} \bigr]
  • b=42, p=41, \bigl[ \color{red}\bm{(1p+0)^{1}}, (20p+1)^{1}, (20213883728p+1)^{1}, (9734562827862979680p+1)^{1}, (190981917693631709217368018p+1)^{1} \bigr]
  • b=42, p=43, \bigl[ (323494p+1)^{1}, (82380728325158281932240916p+1)^{1}, (72583578385580806891729918924080p+1)^{1} \bigr]
  • b=42, p=47, \bigl[ (6p+1)^{1}, (3606p+1)^{1}, (4973484p+1)^{1}, (10131514854860150p+1)^{1}, (1907179313020967448811741571555240832968p+1)^{1} \bigr]
  • b=43, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}}, \color{magenta}\bm{(5p+1)^{1}} \bigr]
  • b=43, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (210p+1)^{1} \bigr]
  • b=43, p=5, \bigl[ (700040p+1)^{1} \bigr]
  • b=43, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (834p+1)^{1}, (22620p+1)^{1} \bigr]
  • b=43, p=11, \bigl[ (548918p+1)^{1}, (333127746p+1)^{1} \bigr]
  • b=43, p=13, \bigl[ (3147003890626906200p+1)^{1} \bigr]
  • b=43, p=17, \bigl[ (38p+1)^{1}, (3339432404p+1)^{1}, (223995696218p+1)^{1} \bigr]
  • b=43, p=19, \bigl[ (12p+1)^{1}, (142p+1)^{1}, (222p+1)^{1}, (2442p+1)^{1}, (112497080460418p+1)^{1} \bigr]
  • b=43, p=23, \bigl[ (489742948766520p+1)^{1}, (3412725237124906844p+1)^{1} \bigr]
  • b=43, p=29, \bigl[ (18p+1)^{1}, (362p+1)^{1}, (110620788167832p+1)^{1}, (10940912695925673676224p+1)^{1} \bigr]
  • b=43, p=31, \bigl[ (228p+1)^{1}, (1216528p+1)^{1}, (1250458671214898695534225154654127952p+1)^{1} \bigr]
  • b=43, p=37, \bigl[ (318802068p+1)^{1}, (347511256p+1)^{1}, (29675202644794p+1)^{1}, (10602126222819291224934p+1)^{1} \bigr]
  • b=43, p=41, \bigl[ (306p+1)^{1}, (5504379692380579152p+1)^{1}, (1923717930765368923218518197181682729050p+1)^{1} \bigr]
  • b=43, p=43, \bigl[ (4p+1)^{1}, (2800p+1)^{1}, (461051720287959860546654630714149530213163508879542555636680p+1)^{1} \bigr]
  • b=43, p=47, \bigl[ (2314643472145050780p+1)^{1}, (276113919215486167226230218422822017942956495873945896p+1)^{1} \bigr]
  • b=44, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}}, (2p+1)^{1} \bigr]
  • b=44, p=3, \bigl[ (2p+1)^{1}, (94p+1)^{1} \bigr]
  • b=44, p=5, \bigl[ (767052p+1)^{1} \bigr]
  • b=44, p=7, \bigl[ (34p+1)^{1}, (166p+1)^{1}, (3816p+1)^{1} \bigr]
  • b=44, p=11, \bigl[ (576p+1)^{1}, (399240502452p+1)^{1} \bigr]
  • b=44, p=13, \bigl[ (4p+1)^{1}, (24p+1)^{1}, (366p+1)^{1}, (4792p+1)^{1}, (842694p+1)^{1} \bigr]
  • b=44, p=17, \bigl[ (854p+1)^{1}, (818165981578493619914p+1)^{1} \bigr]
  • b=44, p=19, \bigl[ (12p+1)^{2}, (61980p+1)^{1}, (333197926701746640p+1)^{1} \bigr]
  • b=44, p=23, \bigl[ (6p+1)^{1}, (44p+1)^{1}, (21074p+1)^{1}, (16518587882p+1)^{1}, (2457053200574p+1)^{1} \bigr]
  • b=44, p=29, \bigl[ (338p+1)^{1}, (660254408p+1)^{1}, (1953407517514729731454403999382p+1)^{1} \bigr]
  • b=44, p=31, \bigl[ (664053120185089594713450746753165812758083837700p+1)^{1} \bigr]
  • b=44, p=37, \bigl[ (22962738p+1)^{1}, (4751748596697973037073542170552846242337595502126p+1)^{1} \bigr]
  • b=44, p=41, \bigl[ (2p+1)^{1}, (1218p+1)^{1}, (101940p+1)^{1}, (18867895001252243772p+1)^{1}, (1018951686112736595360637181300p+1)^{1} \bigr]
  • b=44, p=43, \bigl[ \color{red}\bm{(1p+0)^{1}}, (17645846112396p+1)^{1}, (772589460181554267822501062575631729019755747269854p+1)^{1} \bigr]
  • b=44, p=47, \bigl[ (14p+1)^{1}, (90p+1)^{1}, (3254p+1)^{1}, (4774674062178p+1)^{1}, (8187805773708p+1)^{1}, (2347230917370585046592861762092224p+1)^{1} \bigr]
  • b=45, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, \color{magenta}\bm{(11p+1)^{1}} \bigr]
  • b=45, p=3, \bigl[ (6p+1)^{1}, (36p+1)^{1} \bigr]
  • b=45, p=5, \bigl[ (294p+1)^{1}, (570p+1)^{1} \bigr]
  • b=45, p=7, \bigl[ (4p+1)^{1}, (10p+1)^{1}, (589224p+1)^{1} \bigr]
  • b=45, p=11, \bigl[ \color{red}\bm{(1p+0)^{1}}, (8p+1)^{1}, (3233773502268p+1)^{1} \bigr]
  • b=45, p=13, \bigl[ (10p+1)^{1}, (28820400p+1)^{1}, (110522830p+1)^{1} \bigr]
  • b=45, p=17, \bigl[ (90p+1)^{1}, (11110559912966141932770p+1)^{1} \bigr]
  • b=45, p=19, \bigl[ (30819918383205726135290410530p+1)^{1} \bigr]
  • b=45, p=23, \bigl[ (6p+1)^{1}, (751090906657030539235839710327256p+1)^{1} \bigr]
  • b=45, p=29, \bigl[ (2p+1)^{1}, (1091866653697410152p+1)^{1}, (368037958485086120429310p+1)^{1} \bigr]
  • b=45, p=31, \bigl[ (61050p+1)^{1}, (596760p+1)^{1}, (27900388p+1)^{1}, (43012293966351363803561368p+1)^{1} \bigr]
  • b=45, p=37, \bigl[ (40p+1)^{1}, (684564p+1)^{1}, (82686139489494p+1)^{1}, (371594962742184p+1)^{1}, (5742906832123054p+1)^{1} \bigr]
  • b=45, p=41, \bigl[ (285833854426726730p+1)^{1}, (2861402874637726968571496688468560269288550090p+1)^{1} \bigr]
  • b=45, p=43, \bigl[ (456p+1)^{1}, (4000p+1)^{1}, (12829810p+1)^{1}, (913835558307805131540p+1)^{1}, (885534227647924179320814876p+1)^{1} \bigr]
  • b=45, p=47, \bigl[ (24p+1)^{1}, (3292004p+1)^{1}, (1102921367534969652313724p+1)^{1}, (26825204875159537171844116644493479774p+1)^{1} \bigr]
  • b=46, p=2, \bigl[ \color{magenta}\bm{(23p+1)^{1}} \bigr]
  • b=46, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{1}, (34p+1)^{1} \bigr]
  • b=46, p=5, \bigl[ \color{red}\bm{(1p+0)^{1}}, (183078p+1)^{1} \bigr]
  • b=46, p=7, \bigl[ (1383548118p+1)^{1} \bigr]
  • b=46, p=11, \bigl[ (66p+1)^{1}, (128p+1)^{1}, (16526p+1)^{1}, (21170p+1)^{1} \bigr]
  • b=46, p=13, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (12p+1)^{1}, (42p+1)^{1}, (1852p+1)^{1}, (815274p+1)^{1} \bigr]
  • b=46, p=17, \bigl[ (80p+1)^{1}, (17756754006612992813898p+1)^{1} \bigr]
  • b=46, p=19, \bigl[ (45754381311911904630505119102p+1)^{1} \bigr]
  • b=46, p=23, \bigl[ (9750p+1)^{1}, (396272p+1)^{1}, (644376p+1)^{1}, (5586848544692760p+1)^{1} \bigr]
  • b=46, p=29, \bigl[ (2p+1)^{1}, (8p+1)^{1}, (50p+1)^{1}, (1190p+1)^{1}, (75554p+1)^{1}, (1342122311604p+1)^{1}, (21661472029818p+1)^{1} \bigr]
  • b=46, p=31, \bigl[ (22p+1)^{1}, (256p+1)^{1}, (63676p+1)^{1}, (1621042p+1)^{1}, (4681099073625471540298190190p+1)^{1} \bigr]
  • b=46, p=37, \bigl[ (4p+1)^{1}, (60673398498275728p+1)^{1}, (59736423897279117824764230150892529574p+1)^{1} \bigr]
  • b=46, p=41, \bigl[ (228p+1)^{1}, (618p+1)^{1}, (340816095837900231250845481719993269006023782346521210380p+1)^{1} \bigr]
  • b=46, p=43, \bigl[ (2964p+1)^{1}, (10957285750p+1)^{1}, (2712590818435538461637549267197917616025437954250500p+1)^{1} \bigr]
  • b=46, p=47, \bigl[ (20p+1)^{1}, (349604883792348336956p+1)^{1}, (43156155084557638511362051925699379406221897076454p+1)^{1} \bigr]
  • b=47, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}}, \color{magenta}\bm{(1p+1)^{1}} \bigr]
  • b=47, p=3, \bigl[ (12p+1)^{1}, (20p+1)^{1} \bigr]
  • b=47, p=5, \bigl[ (2p+1)^{1}, (6p+1)^{1}, (2924p+1)^{1} \bigr]
  • b=47, p=7, \bigl[ (6p+1)^{1}, (36589854p+1)^{1} \bigr]
  • b=47, p=11, \bigl[ (12246p+1)^{1}, (36269014590p+1)^{1} \bigr]
  • b=47, p=13, \bigl[ (4p+1)^{1}, (172p+1)^{1}, (1080816p+1)^{1}, (5481936p+1)^{1} \bigr]
  • b=47, p=17, \bigl[ (210p+1)^{1}, (594p+1)^{1}, (125138678p+1)^{1}, (444168878p+1)^{1} \bigr]
  • b=47, p=19, \bigl[ (22p+1)^{1}, (3434066914p+1)^{1}, (2463607348997412p+1)^{1} \bigr]
  • b=47, p=23, \bigl[ \color{red}\bm{(1p+0)^{1}}, (288272814p+1)^{1}, (1780351296634228271130884p+1)^{1} \bigr]
  • b=47, p=29, \bigl[ (12710093684p+1)^{1}, (6297023310322813036437676506803708p+1)^{1} \bigr]
  • b=47, p=31, \bigl[ (10p+1)^{1}, (3090p+1)^{1}, (161001148623269117950105888899853883567656p+1)^{1} \bigr]
  • b=47, p=37, \bigl[ (4036p+1)^{1}, (10428p+1)^{1}, (751798622872101258368946391145048520663678238960p+1)^{1} \bigr]
  • b=47, p=41, \bigl[ (2978p+1)^{1}, (8216p+1)^{1}, (127399730p+1)^{1}, (493570593752p+1)^{1}, (43876028013013819047456921192888p+1)^{1} \bigr]
  • b=47, p=43, \bigl[ (4p+1)^{1}, (30p+1)^{1}, (130116744p+1)^{1}, (321519720629840441106132794791365059001344268519305794p+1)^{1} \bigr]
  • b=47, p=47, \bigl[ (36p+1)^{1}, (5441329636101351307971032557210128p+1)^{1}, (4142702830129770814192942535749872588p+1)^{1} \bigr]
  • b=48, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{2}} \bigr]
  • b=48, p=3, \bigl[ (4p+1)^{1}, (60p+1)^{1} \bigr]
  • b=48, p=5, \bigl[ (2p+1)^{1}, (108p+1)^{1}, (182p+1)^{1} \bigr]
  • b=48, p=7, \bigl[ (10p+1)^{1}, (25132426p+1)^{1} \bigr]
  • b=48, p=11, \bigl[ (2p+1)^{1}, (3578p+1)^{1}, (6658726488p+1)^{1} \bigr]
  • b=48, p=13, \bigl[ (24p+1)^{1}, (67990p+1)^{1}, (42477764542p+1)^{1} \bigr]
  • b=48, p=17, \bigl[ (79785304560p+1)^{1}, (35170814621760p+1)^{1} \bigr]
  • b=48, p=19, \bigl[ (98340418295036133766447327248p+1)^{1} \bigr]
  • b=48, p=23, \bigl[ (1165585502p+1)^{1}, (7190207990p+1)^{1}, (97270579541616p+1)^{1} \bigr]
  • b=48, p=29, \bigl[ (2p+1)^{1}, (110004147354221339702p+1)^{1}, (22224958534200527053260p+1)^{1} \bigr]
  • b=48, p=31, \bigl[ (330312p+1)^{1}, (880506809613787505862358970587469631915720p+1)^{1} \bigr]
  • b=48, p=37, \bigl[ (1776658p+1)^{1}, (535671828p+1)^{1}, (70912060309836886916381634485355307224814p+1)^{1} \bigr]
  • b=48, p=41, \bigl[ (2p+1)^{1}, (98p+1)^{1}, (1326822779799010693439039925192445871388020790068105710885032p+1)^{1} \bigr]
  • b=48, p=43, \bigl[ (10p+1)^{1}, (852p+1)^{1}, (1880346717797556p+1)^{1}, (761558600393734160618306746400131027281650770p+1)^{1} \bigr]
  • b=48, p=47, \bigl[ \color{red}\bm{(1p+0)^{1}}, (264p+1)^{1}, (1070p+1)^{1}, (257900148p+1)^{1}, (13282140734454067860520310015687285940226436616869699136p+1)^{1} \bigr]
  • b=49, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}}, (2p+1)^{2} \bigr]
  • b=49, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}}, (6p+1)^{1}, (14p+1)^{1} \bigr]
  • b=49, p=5, \bigl[ (2p+1)^{1}, (38p+1)^{1}, (560p+1)^{1} \bigr]
  • b=49, p=7, \bigl[ (4p+1)^{1}, (16p+1)^{1}, (130p+1)^{1}, (676p+1)^{1} \bigr]
  • b=49, p=11, \bigl[ (2p+1)^{1}, (102p+1)^{1}, (26678p+1)^{1}, (976940p+1)^{1} \bigr]
  • b=49, p=13, \bigl[ (4p+1)^{1}, (17577832p+1)^{1}, (1242166800p+1)^{1} \bigr]
  • b=49, p=17, \bigl[ (824p+1)^{1}, (162801864p+1)^{1}, (1710518485200p+1)^{1} \bigr]
  • b=49, p=19, \bigl[ (22p+1)^{1}, (18480p+1)^{1}, (213580878p+1)^{1}, (238640354758p+1)^{1} \bigr]
  • b=49, p=23, \bigl[ (2p+1)^{1}, (134p+1)^{1}, (1368687973772p+1)^{1}, (148743192065657154p+1)^{1} \bigr]
  • b=49, p=29, \bigl[ (2p+1)^{1}, (4397940p+1)^{1}, (2459204240862p+1)^{1}, (13878904119884395374300p+1)^{1} \bigr]
  • b=49, p=31, \bigl[ (10p+1)^{1}, (12p+1)^{1}, (682p+1)^{1}, (314658p+1)^{1}, (174855062812668p+1)^{1}, (129002847722563368p+1)^{1} \bigr]
  • b=49, p=37, \bigl[ (4p+1)^{1}, (6p+1)^{1}, (78p+1)^{1}, (129874192148440966702200p+1)^{1}, (420871483788716993979075904p+1)^{1} \bigr]
  • b=49, p=41, \bigl[ (2p+1)^{1}, (118278p+1)^{1}, (219512p+1)^{1}, (500388p+1)^{1}, (39908750p+1)^{1}, (1902671112p+1)^{1}, (106393642347050455026702p+1)^{1} \bigr]
  • b=49, p=43, \bigl[ (22p+1)^{1}, (462p+1)^{1}, (486p+1)^{1}, (3804p+1)^{1}, (5470p+1)^{1}, (88350p+1)^{1}, (110460p+1)^{1}, (3860549019591832p+1)^{1}, (50989234006306480p+1)^{1} \bigr]
  • b=49, p=47, \bigl[ (291974824457930p+1)^{1}, (1354925787157841499138p+1)^{1}, (13945048714777403283142177443781785786p+1)^{1} \bigr]
  • b=50, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}}, (8p+1)^{1} \bigr]
  • b=50, p=3, \bigl[ (850p+1)^{1} \bigr]
  • b=50, p=5, \bigl[ (1275510p+1)^{1} \bigr]
  • b=50, p=7, \bigl[ \color{red}\bm{(1p+0)^{1}}, (325385256p+1)^{1} \bigr]
  • b=50, p=11, \bigl[ (2p+1)^{1}, (90p+1)^{1}, (6698p+1)^{1}, (5394312p+1)^{1} \bigr]
  • b=50, p=13, \bigl[ (48237606p+1)^{1}, (30559167936p+1)^{1} \bigr]
  • b=50, p=17, \bigl[ (8p+1)^{1}, (2549411408p+1)^{1}, (15425372447334p+1)^{1} \bigr]
  • b=50, p=19, \bigl[ (2208321908194p+1)^{1}, (4882749221564488p+1)^{1} \bigr]
  • b=50, p=23, \bigl[ (2p+1)^{1}, (39570320p+1)^{1}, (24728110166434202581555824p+1)^{1} \bigr]
  • b=50, p=29, \bigl[ (7584p+1)^{1}, (38514179755480569438p+1)^{1}, (53360402892373722360p+1)^{1} \bigr]
  • b=50, p=31, \bigl[ (5898p+1)^{1}, (938952p+1)^{1}, (20032848814570p+1)^{1}, (9275429222255204514922p+1)^{1} \bigr]
  • b=50, p=37, \bigl[ (11582053886317936p+1)^{1}, (936494111770236847974581535998069371207558p+1)^{1} \bigr]
  • b=50, p=41, \bigl[ (639279711927342p+1)^{1}, (317541228513501577192296p+1)^{1}, (6633328190336453728379400p+1)^{1} \bigr]
  • b=50, p=43, \bigl[ (1362p+1)^{1}, (190445700341651692622804680p+1)^{1}, (11250013525316669428509851354024732224p+1)^{1} \bigr]
  • b=50, p=47, \bigl[ (330p+1)^{1}, (488p+1)^{1}, (3368601906p+1)^{1}, (662483235030916928p+1)^{1}, (17591365619983127882254169976686386146p+1)^{1} \bigr]
Mizar/みざーMizar/みざー

素因数の形に言及していそうな部分:
https://en.wikipedia.org/wiki/Repunit#Properties

If p is an odd prime, then every prime q that divides R_p^{(b)} must be either 1 plus a multiple of 2p, or a factor of b − 1. For example, a prime factor of R_{29} is 62003 = 1 + 2\cdot 29\cdot 1069. The reason is that the prime p is the smallest exponent greater than 1 such that q divides b^p − 1, because p is prime. Therefore, unless q divides b − 1, p divides the Carmichael function of q, which is even and equal to q − 1.

p が奇素数の場合、 R_p^{(b)} を割るすべての素数 q2p の倍数に 1 を加えた数か、 b - 1 の素因数のどちらかでなければならない。例えば、 R_{29} の素因数は 62003 = 1 + 2 \cdot 29 \cdot 1069 である。これは、 p が素数なので、 qb^p - 1 を割るような 1 より大きい最小の指数が素数 p であるからである。したがって、 qb - 1 を割らない限り、 pqカーマイケル関数 を割り、 q - 1 に等しい偶数であることがわかる。

https://en.wikipedia.org/wiki/Carmichael_function#Order_of_elements_modulo_n

Properties of the Carmichael function

In this section, an integer \displaystyle n is divisible by a nonzero integer \displaystyle m if there exists an integer \displaystyle k such that \displaystyle n=km. This is written as

\displaystyle m\mid n.

Order of elements modulo n

Let a and n be coprime and let m be the smallest exponent with a^m\equiv 1 (\operatorname{mod}n), then it holds that

\displaystyle m\,|\,\lambda (n).

That is, the order m := \operatorname{ord}_n(a) of a unit a in the ring of integers modulo n divides \lambda(n) and

\displaystyle \lambda (n)=\max\{\operatorname{ord}_{n}(a)\,\colon\,\operatorname{gcd}(a,n)=1\}

カーマイケル関数の性質

この節では、整数 \displaystyle n が非零整数 \displaystyle m で割り切れるのは、 \displaystyle n=km のような整数 \displaystyle k が存在するときである、とする。これは次のように書かれる。

\displaystyle m\mid n.

法 n の位数

an を互いに素な数とし、 m を、 a^m\equiv 1 ( \operatorname{mod}n) を満たす最小の指数とすると、以下の式が成り立つ。

\displaystyle m\,|\,\lambda (n).

すなわち、整数環 modulo n における単位 a の位数 m := \operatorname{ord}_n(a)\lambda(n) を割り、かつ

\displaystyle \lambda (n)=\max\{\operatorname{ord}_{n}(a)\,\colon\,\operatorname{gcd}(a,n)=1\}

Mizar/みざーMizar/みざー

https://ja.wikipedia.org/wiki/位数

数学において位数 (いすう、 : order [1])とは,階数次数などと同じくある種の指標 (index) として働く数に用いられる。

  1. "order" は、ものによっては、「位数」ではなく、階数もしくは次数と和訳される(各々を参照のこと)。
  • G位数とは、群 G の元の数のことである。
  • G の元 g位数とは、eG の単位元として、g^n = e を満たす最小の正の整数 n のことである。そのような n が存在しないときは、g の位数は \infty とする。
  • 初等整数論における位数とは、互いに素な正の整数 m と整数 a に対して a^d \equiv 1 (\operatorname{mod} m) なる合同式が成り立つような最小の正の整数 d のことである。このような d を、m を法とする a位数multiplicative order of a modulo m)と呼び、 \operatorname{ord}_m(a)\operatorname{O}_m(a) などと記す。
Mizar/みざーMizar/みざー

素数 p での円分多項式は \Phi_p(x)=x^{p-1}+x^{p-2}+\cdots+x^2+x+1=(x^p-1)/(x-1) なので、このとき、素数 p での円分多項式と、基数 b での p 桁のレピュニット R_p(b)=b^{p-1}+b^{p-2}+\cdots+b^2+b+1=(b^p-1)/(b-1) は同じ形をしている。

https://ja.wikipedia.org/wiki/円分多項式

性質

実際に円分多項式を計算すると以下のようになる。

\begin{align*}\Phi_{1}&=x-1\\\Phi_{2}&=(x^2-1)/\Phi_1&&=x+1\\\Phi_{3}&=(x^3-1)/\Phi_1&&=x^2+x+1\\\Phi_{4}&=(x^4-1)/\Phi_1\Phi_2&&=x^2+1\\\Phi_{5}&=(x^5-1)/\Phi_1&&=x^4+x^3+x^2+x+1\\\Phi_{6}&=(x^6-1)/\Phi_1\Phi_2\Phi_3&&=x^2-x+1\\\Phi_{7}&=(x^7-1)/\Phi_1&&=x^6+x^5+x^4+x^3+x^2+x+1\\\Phi_{8}&=(x^8-1)/\Phi_1\Phi_2\Phi_4&&=x^4+1\\\Phi_{9}&=(x^9-1)/\Phi_1\Phi_3&&=x^6+x^3+1\\\Phi_{10}&=(x^{10}-1)/\Phi_1\Phi_2\Phi_5&&=x^4-x^3+x^2-x+1\\\Phi_{11}&=(x^{11}-1)/\Phi_1&&=x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\\Phi_{12}&=(x^{12}-1)/\Phi_1\Phi_2\Phi_3\Phi_4\Phi_6&&=x^4-x^2+1\\\end{align*}

円分多項式の次数はその性質上オイラーの\varphi関数を用いれば \varphi(n) に等しい。また、上記の例では係数が 1, −1, 0 しか現れないが、必ずそうなるわけではない。実際 \Phi_{105}(x) がそうでない最小の例で係数に −2 が現れる。
\begin{align*}\Phi_{105}(x)&=x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2 x^{41}-x^{40}-x^{39}+x^{36}\\&\qquad\quad+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{24}\\&\qquad\quad-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}\\&\qquad\quad-x^9-x^8-2 x^7-x^6-x^5+x^2+x+1\end{align*}

https://integers.hatenablog.com/entry/2016/02/14/175138

補題7 a2 以上の整数とする。このとき、任意の整数 k に対して、 \Phi_a(k) の素因数は a の約数であるか、ある自然数 n を用いて an+1 と書ける。

証明. X^a−1=\Phi_a(X)F(X) と書ける(F(X)\in\mathbb{Z}[X])。X=k を代入することにより k^a−1=\Phi_a(k)F(k) を得る。 \Phi_a(k)\ne\pm 1 のときを考えればよい。 \Phi_a(k) の素因数を勝手にとって p とする。このとき、 k^q\equiv 1(\operatorname{mod}p) が成り立つ。よって、 k(\mathbb{Z}/p\mathbb{Z})^\times における位数を e とすればある自然数bが存在して a=eb と書ける。 b\ge 2 のときを考える。このとき、 X^e−1\Phi_a(X) は共通因数をもたない(X^e−1 の根は 1 の原始 a 乗根ではない)ので、 X^e−1\mid F(x) である。その商を G(x)\in\mathbb{Z}[X] とすれば

\Phi_a(X)G(X)=X^{e(b−1)}+X^{e(b−2)}+⋯+X^e+1

が成り立つ。 Xk を代入して、 e の定義より成り立つ k^e\equiv 1(\operatorname{mod}p) を適用することにより、 b\equiv\Phi_a(k)G(k)\equiv 0(\operatorname{mod}p) が従う。よって、 p\mid a=eb 、すなわち pa の約数である。次に a=e と仮定する。このときはFermatの小定理によって e\mid p−1 である。すなわち、ある自然数 n が存在して p=an+1 が成り立つ。 \mathbf{Q.E.D.}