素数桁のレピュニットが持つ素因数
(予想)
基数
-
の意味 :p\mid (b-1) を(b-1) で割り切れる時p -
の意味 :p\nmid (b-1) を(b-1) で割り切れない時p
以下は
-
b=-50, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{2}} \bigr] -
b=-50, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(6p+1)^{1} (14p+1)^{1} \bigr] -
b=-50, p=5, \bigl[ ,(2p+1)^{1} (111408p+1)^{1} \bigr] -
b=-50, p=7, \bigl[ ,(870p+1)^{1} (359280p+1)^{1} \bigr] -
b=-50, p=11, \bigl[ ,(8p+1)^{1} (97795119069078p+1)^{1} \bigr] -
b=-50, p=13, \bigl[ ,(2434p+1)^{1} (581860501220512p+1)^{1} \bigr] -
b=-50, p=17, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(13847228706p+1)^{1} (21989242474200p+1)^{1} \bigr] -
b=-50, p=19, \bigl[ ,(24p+1)^{1} ,(174p+1)^{1} ,(8464p+1)^{1} (809886116546300584p+1)^{1} \bigr] -
b=-50, p=23, \bigl[ ,(246p+1)^{1} ,(110295144p+1)^{1} (70792649308527687408824p+1)^{1} \bigr] -
b=-50, p=29, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(3674360p+1)^{1} (3830262553829613289849808933814818p+1)^{1} \bigr] -
b=-50, p=31, \bigl[ ,(279448p+1)^{1} (3399973364552178761343783162519639474827518p+1)^{1} \bigr] -
b=-50, p=37, \bigl[ ,(34p+1)^{1} ,(43768p+1)^{1} ,(52474800p+1)^{1} ,(1883090000095578p+1)^{1} (1398004336844168504698170p+1)^{1} \bigr] -
b=-50, p=41, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(37484799639819896471237661066p+1)^{1} (23070370206462280725880783336968p+1)^{1} \bigr] -
b=-50, p=43, \bigl[ ,(891426742p+1)^{1} ,(1085509454811286p+1)^{1} (2897446159919802661487725736589014196330342p+1)^{1} \bigr] -
b=-50, p=47, \bigl[ ,(14p+1)^{1} ,(38p+1)^{1} ,(316056928016896781924033067729080p+1)^{1} (1694529095375327796989529787561720158p+1)^{1} \bigr] -
b=-49, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{4}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=-49, p=3, \bigl[ ,(4p+1)^{1} (60p+1)^{1} \bigr] -
b=-49, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(56p+1)^{1} (804p+1)^{1} \bigr] -
b=-49, p=7, \bigl[ (1937780208p+1)^{1} \bigr] -
b=-49, p=11, \bigl[ ,(60p+1)^{1} ,(128p+1)^{1} (7632762308p+1)^{1} \bigr] -
b=-49, p=13, \bigl[ ,(12p+1)^{1} (91989028296401316p+1)^{1} \bigr] -
b=-49, p=17, \bigl[ ,(8p+1)^{1} ,(3491844p+1)^{1} (7828708198450724p+1)^{1} \bigr] -
b=-49, p=19, \bigl[ (136773485733813705386496995472p+1)^{1} \bigr] -
b=-49, p=23, \bigl[ ,(1160p+1)^{1} ,(28260p+1)^{1} ,(674520p+1)^{1} (2420954015733063644p+1)^{1} \bigr] -
b=-49, p=29, \bigl[ ,(8p+1)^{1} ,(4719072p+1)^{1} ,(1921243707252p+1)^{1} (4024642759619777301428p+1)^{1} \bigr] -
b=-49, p=31, \bigl[ ,(1095084816p+1)^{1} ,(2403311250599459812p+1)^{1} (6349881464815873900p+1)^{1} \bigr] -
b=-49, p=37, \bigl[ (186244404035294113902558370990468780134013945058340435676128p+1)^{1} \bigr] -
b=-49, p=41, \bigl[ ,(825416p+1)^{1} ,(132917760394997528p+1)^{1} (5253657974556289804196077149512596219296p+1)^{1} \bigr] -
b=-49, p=43, \bigl[ ,(4p+1)^{1} ,(24p+1)^{1} (12412136890304948050288111833254978910105955082256813345265067332p+1)^{1} \bigr] -
b=-49, p=47, \bigl[ ,(2040p+1)^{1} ,(97337388p+1)^{1} (26670907805367151649309936911206161636210491098582321908070300p+1)^{1} \bigr] -
b=-48, p=2, \bigl[ \color{magenta}\bm{(23p+1)^{1}} \bigr] -
b=-48, p=3, \bigl[ ,(12p+1)^{1} (20p+1)^{1} \bigr] -
b=-48, p=5, \bigl[ (1040016p+1)^{1} \bigr] -
b=-48, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (244509930p+1)^{1} \bigr] -
b=-48, p=11, \bigl[ ,(330p+1)^{1} (1592350237626p+1)^{1} \bigr] -
b=-48, p=13, \bigl[ ,(714p+1)^{1} (1214250533876802p+1)^{1} \bigr] -
b=-48, p=17, \bigl[ (45756841037179073428036560p+1)^{1} \bigr] -
b=-48, p=19, \bigl[ ,(78p+1)^{1} ,(87690p+1)^{1} ,(2383830p+1)^{1} (842868560922p+1)^{1} \bigr] -
b=-48, p=23, \bigl[ ,(6p+1)^{1} ,(554837895254064p+1)^{1} (233193151484603310p+1)^{1} \bigr] -
b=-48, p=29, \bigl[ ,(12p+1)^{1} (11496784186179610142865690166216031619074772p+1)^{1} \bigr] -
b=-48, p=31, \bigl[ ,(18858p+1)^{1} ,(2074398p+1)^{1} (230042845544690162059745399479145796p+1)^{1} \bigr] -
b=-48, p=37, \bigl[ ,(267366p+1)^{1} ,(133708522598998813459296p+1)^{1} (1810753018800779483847868854p+1)^{1} \bigr] -
b=-48, p=41, \bigl[ ,(268367415132p+1)^{1} (38583103306510968276960938792150625995642370434565636p+1)^{1} \bigr] -
b=-48, p=43, \bigl[ ,(382032p+1)^{1} ,(8927154p+1)^{1} (147896863546535935622271278622538087790143993322558562p+1)^{1} \bigr] -
b=-48, p=47, \bigl[ ,(1229628p+1)^{1} ,(25949253474831630408p+1)^{1} ,(305469175423368246276p+1)^{1} (4475943878616478472321880p+1)^{1} \bigr] -
b=-47, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(11p+1)^{1}} \bigr] -
b=-47, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (34p+1)^{1} \bigr] -
b=-47, p=5, \bigl[ (955604p+1)^{1} \bigr] -
b=-47, p=7, \bigl[ ,(840p+1)^{1} (256386p+1)^{1} \bigr] -
b=-47, p=11, \bigl[ ,(35396p+1)^{1} (12025261458p+1)^{1} \bigr] -
b=-47, p=13, \bigl[ ,(10p+1)^{1} ,(952p+1)^{1} (5397602233854p+1)^{1} \bigr] -
b=-47, p=17, \bigl[ ,(649934p+1)^{1} (2955664998684725214p+1)^{1} \bigr] -
b=-47, p=19, \bigl[ (64545276034955575995024916278p+1)^{1} \bigr] -
b=-47, p=23, \bigl[ (260184642827957962630982799621016394p+1)^{1} \bigr] -
b=-47, p=29, \bigl[ ,(2p+1)^{1} ,(1052p+1)^{1} ,(17652p+1)^{1} ,(501800p+1)^{1} ,(51873728p+1)^{1} (110268572368127558p+1)^{1} \bigr] -
b=-47, p=31, \bigl[ ,(3052p+1)^{1} ,(9610p+1)^{1} ,(72178p+1)^{1} ,(8168258031856p+1)^{1} (287829589290074406p+1)^{1} \bigr] -
b=-47, p=37, \bigl[ ,(4p+1)^{1} ,(11096771180062750p+1)^{1} (678567661924550192776344242171165604414p+1)^{1} \bigr] -
b=-47, p=41, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(66p+1)^{1} (1100972052284408596944943070291057058776722461045083764218p+1)^{1} \bigr] -
b=-47, p=43, \bigl[ ,(10p+1)^{1} ,(22p+1)^{1} ,(92903832250126208566p+1)^{1} (236139622528679004133671691556104908958660p+1)^{1} \bigr] -
b=-47, p=47, \bigl[ ,(14p+1)^{1} ,(330p+1)^{1} ,(1394p+1)^{1} ,(450618p+1)^{1} ,(223812548p+1)^{1} ,(1297089860p+1)^{1} ,(53332168394p+1)^{1} (75391785622320208980636p+1)^{1} \bigr] -
b=-46, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{2}} (2p+1)^{1} \bigr] -
b=-46, p=3, \bigl[ ,(6p+1)^{1} (36p+1)^{1} \bigr] -
b=-46, p=5, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(14p+1)^{1} (36p+1)^{1} \bigr] -
b=-46, p=7, \bigl[ (1324673730p+1)^{1} \bigr] -
b=-46, p=11, \bigl[ ,(90p+1)^{1} ,(36338p+1)^{1} (9528338p+1)^{1} \bigr] -
b=-46, p=13, \bigl[ ,(16102p+1)^{1} (32283852341344p+1)^{1} \bigr] -
b=-46, p=17, \bigl[ ,(216p+1)^{1} (6299635634011346426118p+1)^{1} \bigr] -
b=-46, p=19, \bigl[ ,(78p+1)^{1} ,(84p+1)^{1} ,(27204p+1)^{1} ,(458892p+1)^{1} (4104402384p+1)^{1} \bigr] -
b=-46, p=23, \bigl[ (162033358841136164361412492057211490p+1)^{1} \bigr] -
b=-46, p=29, \bigl[ ,(12054p+1)^{1} ,(85473698p+1)^{1} (1405142415102317774230673314250p+1)^{1} \bigr] -
b=-46, p=31, \bigl[ ,(10p+1)^{1} ,(136p+1)^{1} ,(68358834151390p+1)^{1} (867187280460308178438029542p+1)^{1} \bigr] -
b=-46, p=37, \bigl[ ,(951101134p+1)^{1} ,(28009158378790p+1)^{1} (524577891637309763328029730320334p+1)^{1} \bigr] -
b=-46, p=41, \bigl[ ,(2p+1)^{1} ,(398p+1)^{1} ,(76826852p+1)^{1} (18118442180649795272870145171600511294904489269310p+1)^{1} \bigr] -
b=-46, p=43, \bigl[ ,(34896p+1)^{1} ,(275314p+1)^{1} ,(7624612p+1)^{1} (26778920246520091281361279670516093768772268836p+1)^{1} \bigr] -
b=-46, p=47, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(14p+1)^{1} (20627144008917485363248589836812677198797057529693347613363311039312998p+1)^{1} \bigr] -
b=-45, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=-45, p=3, \bigl[ ,(2p+1)^{1} (94p+1)^{1} \bigr] -
b=-45, p=5, \bigl[ ,(8p+1)^{1} (19568p+1)^{1} \bigr] -
b=-45, p=7, \bigl[ ,(6p+1)^{1} (26987538p+1)^{1} \bigr] -
b=-45, p=11, \bigl[ ,(6p+1)^{1} (45197283382122p+1)^{1} \bigr] -
b=-45, p=13, \bigl[ ,(154p+1)^{1} ,(194556p+1)^{1} (1024217974p+1)^{1} \bigr] -
b=-45, p=17, \bigl[ ,(1725613898p+1)^{1} (554642864101826p+1)^{1} \bigr] -
b=-45, p=19, \bigl[ ,(78p+1)^{1} ,(3292p+1)^{1} ,(112674p+1)^{1} (148452423233092p+1)^{1} \bigr] -
b=-45, p=23, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(20p+1)^{1} ,(1202p+1)^{1} ,(1416p+1)^{1} (222547691198706519882p+1)^{1} \bigr] -
b=-45, p=29, \bigl[ ,(12p+1)^{1} ,(167774p+1)^{1} (387310166438717924063391233344564994p+1)^{1} \bigr] -
b=-45, p=31, \bigl[ ,(21140754180p+1)^{1} (1901018009927820004484336113347665400p+1)^{1} \bigr] -
b=-45, p=37, \bigl[ ,(4p+1)^{1} ,(3766p+1)^{1} ,(132318p+1)^{1} ,(781498p+1)^{1} (2949046893370937690500695437048063878p+1)^{1} \bigr] -
b=-45, p=41, \bigl[ ,(2p+1)^{1} ,(10680p+1)^{1} ,(1787826p+1)^{1} ,(3392169615423951094962p+1)^{1} (86569847971547028577485146p+1)^{1} \bigr] -
b=-45, p=43, \bigl[ ,(22p+1)^{1} ,(1839962706974677665469654p+1)^{1} (826578966499964720003373659764226347500p+1)^{1} \bigr] -
b=-45, p=47, \bigl[ ,(22456158366p+1)^{1} ,(106550465814021510867296244p+1)^{1} (43958809966352891663838009507570606p+1)^{1} \bigr] -
b=-44, p=2, \bigl[ \color{magenta}\bm{(21p+1)^{1}} \bigr] -
b=-44, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (210p+1)^{1} \bigr] -
b=-44, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(84p+1)^{1} (348p+1)^{1} \bigr] -
b=-44, p=7, \bigl[ (1013580348p+1)^{1} \bigr] -
b=-44, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(90p+1)^{1} ,(276p+1)^{1} (392408p+1)^{1} \bigr] -
b=-44, p=13, \bigl[ ,(1426p+1)^{1} (213620350739302p+1)^{1} \bigr] -
b=-44, p=17, \bigl[ ,(530274888p+1)^{1} (1259169173104700p+1)^{1} \bigr] -
b=-44, p=19, \bigl[ ,(352p+1)^{1} (2939500528153313223108460p+1)^{1} \bigr] -
b=-44, p=23, \bigl[ ,(2p+1)^{1} (1295308905675223436006729105352486p+1)^{1} \bigr] -
b=-44, p=29, \bigl[ ,(2p+1)^{1} ,(323302178483828p+1)^{1} (633371424872120701171229594p+1)^{1} \bigr] -
b=-44, p=31, \bigl[ ,(229682836p+1)^{1} ,(1649521698p+1)^{1} ,(954454048236p+1)^{1} (58902276890710p+1)^{1} \bigr] -
b=-44, p=37, \bigl[ ,(52391481527728p+1)^{1} (1990088492601143202803197400328216946130020p+1)^{1} \bigr] -
b=-44, p=41, \bigl[ ,(37892942p+1)^{1} ,(17589766067066p+1)^{1} ,(335108904356592p+1)^{1} (847632184327242853974656p+1)^{1} \bigr] -
b=-44, p=43, \bigl[ ,(3582p+1)^{1} ,(67680p+1)^{1} (53735130509489363246478901346868691678636523214429667626p+1)^{1} \bigr] -
b=-44, p=47, \bigl[ ,(171776p+1)^{1} ,(7831538p+1)^{1} ,(2365532019270628781100907640p+1)^{1} (249996206365939548395030040078p+1)^{1} \bigr] -
b=-43, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-43, p=3, \bigl[ ,(4p+1)^{1} (46p+1)^{1} \bigr] -
b=-43, p=5, \bigl[ (668220p+1)^{1} \bigr] -
b=-43, p=7, \bigl[ (882527958p+1)^{1} \bigr] -
b=-43, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(6p+1)^{1} ,(32642p+1)^{1} (315458p+1)^{1} \bigr] -
b=-43, p=13, \bigl[ ,(4p+1)^{1} ,(4242p+1)^{1} (1027770462970p+1)^{1} \bigr] -
b=-43, p=17, \bigl[ ,(289294064p+1)^{1} (1596885226409024p+1)^{1} \bigr] -
b=-43, p=19, \bigl[ (12992549454139254324052984074p+1)^{1} \bigr] -
b=-43, p=23, \bigl[ ,(2p+1)^{1} ,(797901630p+1)^{1} (42542099555010530269130p+1)^{1} \bigr] -
b=-43, p=29, \bigl[ ,(2p+1)^{1} ,(23580p+1)^{1} ,(238691948p+1)^{1} (658725271640078057857090878p+1)^{1} \bigr] -
b=-43, p=31, \bigl[ ,(121473719148p+1)^{1} ,(208474092707356p+1)^{1} (13075248275875405558p+1)^{1} \bigr] -
b=-43, p=37, \bigl[ ,(18130p+1)^{1} ,(246204154p+1)^{1} ,(24385464142029087084p+1)^{1} (305666912199613032000p+1)^{1} \bigr] -
b=-43, p=41, \bigl[ ,(2p+1)^{1} ,(602p+1)^{1} ,(16970p+1)^{1} ,(26788496135228910p+1)^{1} (3321204336756327316310206222026068p+1)^{1} \bigr] -
b=-43, p=43, \bigl[ ,(22p+1)^{1} ,(30p+1)^{1} ,(156p+1)^{1} ,(2016p+1)^{1} ,(11300604859819224751884574p+1)^{1} (26531041957417103595862032p+1)^{1} \bigr] -
b=-43, p=47, \bigl[ ,(6p+1)^{1} ,(14p+1)^{1} ,(296p+1)^{1} ,(530243580p+1)^{1} ,(300175131098966243030p+1)^{1} (31428843381560917113631259151668p+1)^{1} \bigr] -
b=-42, p=2, \bigl[ (20p+1)^{1} \bigr] -
b=-42, p=3, \bigl[ (574p+1)^{1} \bigr] -
b=-42, p=5, \bigl[ ,(26p+1)^{1} (4640p+1)^{1} \bigr] -
b=-42, p=7, \bigl[ ,(4p+1)^{1} ,(48p+1)^{1} (78370p+1)^{1} \bigr] -
b=-42, p=11, \bigl[ ,(2p+1)^{3} ,(6p+1)^{1} (1860470306p+1)^{1} \bigr] -
b=-42, p=13, \bigl[ ,(1420p+1)^{1} ,(88732p+1)^{1} (106304034p+1)^{1} \bigr] -
b=-42, p=17, \bigl[ ,(6p+1)^{1} ,(228p+1)^{1} (13489241627741917920p+1)^{1} \bigr] -
b=-42, p=19, \bigl[ ,(804p+1)^{1} (556514369331443763256602p+1)^{1} \bigr] -
b=-42, p=23, \bigl[ ,(330p+1)^{1} ,(88117034p+1)^{1} (1420530914086542308030p+1)^{1} \bigr] -
b=-42, p=29, \bigl[ ,(2p+1)^{1} ,(60p+1)^{1} (926215800209687219278453007060927168492p+1)^{1} \bigr] -
b=-42, p=31, \bigl[ ,(132p+1)^{1} ,(1087986p+1)^{1} ,(25935796p+1)^{1} ,(38600610p+1)^{1} (1182099290460451318p+1)^{1} \bigr] -
b=-42, p=37, \bigl[ ,(4p+1)^{1} ,(34p+1)^{1} ,(166p+1)^{1} ,(1799355934816p+1)^{1} (9411140270681435452721628304195314p+1)^{1} \bigr] -
b=-42, p=41, \bigl[ ,(2p+1)^{1} ,(80477593770p+1)^{1} (7403407629116172420716309025565718507965584304466p+1)^{1} \bigr] -
b=-42, p=43, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(24p+1)^{1} ,(2734p+1)^{1} ,(5041940274398774618800p+1)^{1} (3012152713792667022357044120702406p+1)^{1} \bigr] -
b=-42, p=47, \bigl[ ,(134p+1)^{1} (1541270005874173287693354763490739005265317137254274747877283793285448p+1)^{1} \bigr] -
b=-41, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{3}} (2p+1)^{1} \bigr] -
b=-41, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (182p+1)^{1} \bigr] -
b=-41, p=5, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} (822p+1)^{1} \bigr] -
b=-41, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(10p+1)^{1} (1332856p+1)^{1} \bigr] -
b=-41, p=11, \bigl[ ,(210p+1)^{1} (515442830090p+1)^{1} \bigr] -
b=-41, p=13, \bigl[ ,(6p+1)^{1} ,(33276p+1)^{1} (49578676770p+1)^{1} \bigr] -
b=-41, p=17, \bigl[ (3661232867648144577316160p+1)^{1} \bigr] -
b=-41, p=19, \bigl[ ,(10p+1)^{1} (28830821619945171558546130p+1)^{1} \bigr] -
b=-41, p=23, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(20p+1)^{1} ,(42p+1)^{1} ,(12674p+1)^{1} (7598074070725633026p+1)^{1} \bigr] -
b=-41, p=29, \bigl[ ,(72p+1)^{1} ,(116296620648996512p+1)^{1} (6873548850020877683400p+1)^{1} \bigr] -
b=-41, p=31, \bigl[ ,(10p+1)^{1} ,(2586p+1)^{1} ,(188302300p+1)^{1} ,(3867117996p+1)^{1} (4364817773389304208p+1)^{1} \bigr] -
b=-41, p=37, \bigl[ ,(34p+1)^{1} (240727637702013043907194755255524693437694984108531914p+1)^{1} \bigr] -
b=-41, p=41, \bigl[ ,(440p+1)^{1} ,(497480p+1)^{1} (2100317099811423767811663198578683726634928645258080p+1)^{1} \bigr] -
b=-41, p=43, \bigl[ ,(4p+1)^{1} ,(62802p+1)^{1} ,(18831230599240p+1)^{1} ,(20618262152087469196p+1)^{1} (3693450040927541198386p+1)^{1} \bigr] -
b=-41, p=47, \bigl[ ,(14p+1)^{1} ,(26p+1)^{1} ,(43008p+1)^{1} (1965780062605541891766152119457358980089601601169145999433404p+1)^{1} \bigr]
-
b=-40, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} (6p+1)^{1} \bigr] -
b=-40, p=3, \bigl[ ,(2p+1)^{1} (74p+1)^{1} \bigr] -
b=-40, p=5, \bigl[ ,(2p+1)^{2} (4128p+1)^{1} \bigr] -
b=-40, p=7, \bigl[ ,(30p+1)^{1} (2705550p+1)^{1} \bigr] -
b=-40, p=11, \bigl[ ,(2p+1)^{1} (40434821170346p+1)^{1} \bigr] -
b=-40, p=13, \bigl[ ,(4p+1)^{1} ,(6581440p+1)^{1} (277659492p+1)^{1} \bigr] -
b=-40, p=17, \bigl[ ,(38p+1)^{1} ,(235760p+1)^{1} (950525213149806p+1)^{1} \bigr] -
b=-40, p=19, \bigl[ ,(22p+1)^{1} ,(84p+1)^{1} (5273311647377472348154p+1)^{1} \bigr] -
b=-40, p=23, \bigl[ ,(2p+1)^{1} ,(34634p+1)^{1} (199314647572992975061771920p+1)^{1} \bigr] -
b=-40, p=29, \bigl[ ,(2p+1)^{1} ,(14969964p+1)^{1} ,(3816024438620718p+1)^{1} (8552202629106272p+1)^{1} \bigr] -
b=-40, p=31, \bigl[ ,(43753132p+1)^{1} ,(812261388042150p+1)^{1} (1062394556805118596946p+1)^{1} \bigr] -
b=-40, p=37, \bigl[ ,(96525394p+1)^{1} ,(241891348p+1)^{1} ,(37336427031064p+1)^{1} (2819903542553765079166p+1)^{1} \bigr] -
b=-40, p=41, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(62p+1)^{1} ,(8448p+1)^{1} ,(3006123659262246p+1)^{1} (64629679160048211915695676592084728p+1)^{1} \bigr] -
b=-40, p=43, \bigl[ ,(4p+1)^{1} ,(30p+1)^{1} ,(70p+1)^{1} ,(352720p+1)^{1} (43027453493359075806161845318558751315787449823652p+1)^{1} \bigr] -
b=-40, p=47, \bigl[ ,(156p+1)^{1} ,(2744p+1)^{1} ,(1767268454p+1)^{1} ,(11199014900532188p+1)^{1} (24859523312437141353570596098430150p+1)^{1} \bigr] -
b=-39, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(9p+1)^{1}} \bigr] -
b=-39, p=3, \bigl[ (494p+1)^{1} \bigr] -
b=-39, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (8202p+1)^{1} \bigr] -
b=-39, p=7, \bigl[ ,(6p+1)^{1} ,(10p+1)^{1} (160534p+1)^{1} \bigr] -
b=-39, p=11, \bigl[ ,(1110p+1)^{1} (59089017600p+1)^{1} \bigr] -
b=-39, p=13, \bigl[ (928616824168231884p+1)^{1} \bigr] -
b=-39, p=17, \bigl[ ,(6p+1)^{1} ,(146336p+1)^{1} (6411385731974726p+1)^{1} \bigr] -
b=-39, p=19, \bigl[ ,(384p+1)^{1} ,(4395828p+1)^{1} (3668388284626962p+1)^{1} \bigr] -
b=-39, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(1064p+1)^{1} ,(7606020p+1)^{1} (152761165898049402p+1)^{1} \bigr] -
b=-39, p=29, \bigl[ ,(2p+1)^{1} (202098738612198499642685536215617362086830p+1)^{1} \bigr] -
b=-39, p=31, \bigl[ ,(136p+1)^{1} ,(580p+1)^{1} (223750333141880274113611110453350951142p+1)^{1} \bigr] -
b=-39, p=37, \bigl[ ,(40029310888507776340p+1)^{1} (33771387716177703514621576506431728p+1)^{1} \bigr] -
b=-39, p=41, \bigl[ ,(2p+1)^{1} ,(470586p+1)^{1} ,(681538299337802p+1)^{1} (2333618949970097613499334760341859306p+1)^{1} \bigr] -
b=-39, p=43, \bigl[ ,(736p+1)^{1} ,(2082p+1)^{1} ,(1577635705206965738754p+1)^{1} (787880675935762945385127356219302p+1)^{1} \bigr] -
b=-39, p=47, \bigl[ ,(6p+1)^{1} ,(4118022717716p+1)^{1} (5852017947374583588119043589599871561594904677739857736p+1)^{1} \bigr] -
b=-38, p=2, \bigl[ (18p+1)^{1} \bigr] -
b=-38, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (22p+1)^{1} \bigr] -
b=-38, p=5, \bigl[ (406334p+1)^{1} \bigr] -
b=-38, p=7, \bigl[ ,(4p+1)^{1} ,(34p+1)^{1} (60468p+1)^{1} \bigr] -
b=-38, p=11, \bigl[ ,(2p+1)^{1} ,(30p+1)^{1} ,(42p+1)^{1} ,(102p+1)^{1} (140490p+1)^{1} \bigr] -
b=-38, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} ,(42p+1)^{1} ,(28336p+1)^{1} (4894284p+1)^{1} \bigr] -
b=-38, p=17, \bigl[ ,(18p+1)^{1} ,(17000p+1)^{1} ,(2700576p+1)^{1} (265989540p+1)^{1} \bigr] -
b=-38, p=19, \bigl[ ,(10p+1)^{1} ,(134592300562p+1)^{1} (2865912607818p+1)^{1} \bigr] -
b=-38, p=23, \bigl[ ,(2p+1)^{1} ,(14040p+1)^{1} ,(411980p+1)^{1} (16766102518620157940p+1)^{1} \bigr] -
b=-38, p=29, \bigl[ ,(2p+1)^{1} ,(612p+1)^{1} ,(5527062140p+1)^{1} ,(686147186942p+1)^{1} (1723963892922p+1)^{1} \bigr] -
b=-38, p=31, \bigl[ ,(430p+1)^{1} (583448416967865562460243824697797797827476p+1)^{1} \bigr] -
b=-38, p=37, \bigl[ ,(16p+1)^{1} ,(37770p+1)^{1} (23676801366256264849828545618733221667369705228p+1)^{1} \bigr] -
b=-38, p=41, \bigl[ ,(165582p+1)^{1} ,(6010731848665950561606p+1)^{1} (22068394685321911280826120338990p+1)^{1} \bigr] -
b=-38, p=43, \bigl[ ,(4p+1)^{1} ,(24p+1)^{1} ,(40p+1)^{1} ,(136p+1)^{1} ,(45160p+1)^{1} ,(24602934555636p+1)^{1} (13755446627895042194528342456154p+1)^{1} \bigr] -
b=-38, p=47, \bigl[ ,(120p+1)^{1} ,(281862978p+1)^{1} ,(379335421175662990394926974p+1)^{1} (72786917340099792150593619734p+1)^{1} \bigr] -
b=-37, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=-37, p=3, \bigl[ ,(10p+1)^{1} (14p+1)^{1} \bigr] -
b=-37, p=5, \bigl[ (364968p+1)^{1} \bigr] -
b=-37, p=7, \bigl[ (356886756p+1)^{1} \bigr] -
b=-37, p=11, \bigl[ ,(2p+1)^{1} ,(188p+1)^{1} (8944464738p+1)^{1} \bigr] -
b=-37, p=13, \bigl[ ,(4p+1)^{1} ,(45474p+1)^{1} (15736652326p+1)^{1} \bigr] -
b=-37, p=17, \bigl[ ,(6p+1)^{1} (6860559993177359635158p+1)^{1} \bigr] -
b=-37, p=19, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(10p+1)^{1} ,(426142152p+1)^{1} (29457812651728p+1)^{1} \bigr] -
b=-37, p=23, \bigl[ ,(17264p+1)^{1} ,(65010p+1)^{1} ,(67647756p+1)^{1} (1450669032266p+1)^{1} \bigr] -
b=-37, p=29, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(1362p+1)^{1} (3352778509681095704437293763081652p+1)^{1} \bigr] -
b=-37, p=31, \bigl[ ,(22p+1)^{1} ,(36p+1)^{1} ,(60p+1)^{1} ,(208p+1)^{1} ,(2752p+1)^{1} ,(25198327236p+1)^{1} (5723305248671086p+1)^{1} \bigr] -
b=-37, p=37, \bigl[ ,(16p+1)^{1} ,(3625276p+1)^{1} ,(117730600p+1)^{1} ,(167297460p+1)^{1} (3500248032963047748708304p+1)^{1} \bigr] -
b=-37, p=41, \bigl[ ,(20p+1)^{1} ,(1422728318p+1)^{1} ,(12230546480557554876p+1)^{1} (528718521727591672579066446p+1)^{1} \bigr] -
b=-37, p=43, \bigl[ ,(4p+1)^{1} ,(24p+1)^{1} ,(24539292p+1)^{1} ,(14730531174640852743952p+1)^{1} (138758089143705398905733844p+1)^{1} \bigr] -
b=-37, p=47, \bigl[ ,(20p+1)^{1} ,(908p+1)^{1} ,(52034530902146322943010295906p+1)^{1} (289352053365322884145866947742366p+1)^{1} \bigr] -
b=-36, p=2, \bigl[ ,(2p+1)^{1} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-36, p=3, \bigl[ ,(4p+1)^{1} (32p+1)^{1} \bigr] -
b=-36, p=5, \bigl[ ,(48p+1)^{1} (1356p+1)^{1} \bigr] -
b=-36, p=7, \bigl[ ,(60p+1)^{1} (718680p+1)^{1} \bigr] -
b=-36, p=11, \bigl[ ,(5316p+1)^{1} ,(6408p+1)^{1} (78456p+1)^{1} \bigr] -
b=-36, p=13, \bigl[ ,(24p+1)^{1} ,(180p+1)^{1} (483995899632p+1)^{1} \bigr] -
b=-36, p=17, \bigl[ ,(54948p+1)^{1} (487630196785963176p+1)^{1} \bigr] -
b=-36, p=19, \bigl[ ,(54250672692p+1)^{1} (512428718054832p+1)^{1} \bigr] -
b=-36, p=23, \bigl[ ,(264p+1)^{1} ,(98256p+1)^{1} ,(415860p+1)^{1} (5582934562951464p+1)^{1} \bigr] -
b=-36, p=29, \bigl[ ,(12p+1)^{1} (3625328567923416264500056246873387852752p+1)^{1} \bigr] -
b=-36, p=31, \bigl[ (1533960250483708168801760315480283992296242900p+1)^{1} \bigr] -
b=-36, p=37, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(120p+1)^{1} ,(89190362184744p+1)^{1} (5159254259946567401109982350686568p+1)^{1} \bigr] -
b=-36, p=41, \bigl[ ,(98700p+1)^{1} ,(4256613000p+1)^{1} (6004375029423458255279070779470584135051000p+1)^{1} \bigr] -
b=-36, p=43, \bigl[ ,(24p+1)^{1} ,(151200p+1)^{1} ,(67785232311070767924p+1)^{1} (267678305210577060297251647581336p+1)^{1} \bigr] -
b=-36, p=47, \bigl[ ,(36p+1)^{1} ,(21905075407409014836p+1)^{1} ,(650760901394333771340p+1)^{1} (151042468762359802202784p+1)^{1} \bigr] -
b=-35, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (8p+1)^{1} \bigr] -
b=-35, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (132p+1)^{1} \bigr] -
b=-35, p=5, \bigl[ ,(2p+1)^{1} (26526p+1)^{1} \bigr] -
b=-35, p=7, \bigl[ ,(4p+1)^{1} ,(744p+1)^{1} (1690p+1)^{1} \bigr] -
b=-35, p=11, \bigl[ (243811003467290p+1)^{1} \bigr] -
b=-35, p=13, \bigl[ (252719482440133380p+1)^{1} \bigr] -
b=-35, p=17, \bigl[ ,(18p+1)^{1} ,(3048p+1)^{1} (18230336745564914p+1)^{1} \bigr] -
b=-35, p=19, \bigl[ ,(697194p+1)^{1} (23995481346381961368p+1)^{1} \bigr] -
b=-35, p=23, \bigl[ ,(2p+1)^{1} ,(352514p+1)^{1} (1034028636192284401022270p+1)^{1} \bigr] -
b=-35, p=29, \bigl[ ,(539189813108p+1)^{1} (36739488963949239373520521344p+1)^{1} \bigr] -
b=-35, p=31, \bigl[ ,(762p+1)^{1} ,(57265787608p+1)^{1} (15698320745823019722845532172p+1)^{1} \bigr] -
b=-35, p=37, \bigl[ ,(4p+1)^{1} ,(50056p+1)^{1} ,(67800474532354p+1)^{1} (1464652474396410553292031961018p+1)^{1} \bigr] -
b=-35, p=41, \bigl[ ,(2p+1)^{1} ,(61750694756274021102p+1)^{1} (6534308934749646625159531400576390748p+1)^{1} \bigr] -
b=-35, p=43, \bigl[ ,(4p+1)^{1} ,(132402p+1)^{1} ,(336365095268506p+1)^{1} ,(21876698151520074p+1)^{1} (119678506819175554164p+1)^{1} \bigr] -
b=-35, p=47, \bigl[ ,(145853688p+1)^{1} ,(24893589667987792680079503428p+1)^{1} (274534588124064869392786269474p+1)^{1} \bigr] -
b=-34, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=-34, p=3, \bigl[ (374p+1)^{1} \bigr] -
b=-34, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (51926p+1)^{1} \bigr] -
b=-34, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} ,(10p+1)^{1} (14874p+1)^{1} \bigr] -
b=-34, p=11, \bigl[ ,(2p+1)^{1} (7926464555396p+1)^{1} \bigr] -
b=-34, p=13, \bigl[ ,(154614p+1)^{1} (88720124100p+1)^{1} \bigr] -
b=-34, p=17, \bigl[ ,(18p+1)^{1} ,(26p+1)^{1} ,(90p+1)^{1} ,(1650p+1)^{1} ,(6626p+1)^{1} (276984p+1)^{1} \bigr] -
b=-34, p=19, \bigl[ ,(22182200670p+1)^{1} (447218280791952p+1)^{1} \bigr] -
b=-34, p=23, \bigl[ ,(173294506812p+1)^{1} (52204336352758975746p+1)^{1} \bigr] -
b=-34, p=29, \bigl[ ,(2p+1)^{1} ,(15778974p+1)^{1} ,(56861883754280p+1)^{1} (5726305840646598p+1)^{1} \bigr] -
b=-34, p=31, \bigl[ ,(348p+1)^{1} (25552623561615814423045380275200072941138p+1)^{1} \bigr] -
b=-34, p=37, \bigl[ ,(100937399794936445596p+1)^{1} (95542439327014103841871518361534p+1)^{1} \bigr] -
b=-34, p=41, \bigl[ ,(2p+1)^{1} ,(86660p+1)^{1} ,(197006p+1)^{1} ,(18132692029421887596p+1)^{1} (242992816990224440245382p+1)^{1} \bigr] -
b=-34, p=43, \bigl[ ,(4p+1)^{1} ,(126p+1)^{1} ,(2452p+1)^{1} ,(106957118338719189401674p+1)^{1} (1043327102439829669834667026p+1)^{1} \bigr] -
b=-34, p=47, \bigl[ ,(174p+1)^{1} ,(54724256424p+1)^{1} ,(65338280298778902973724p+1)^{1} (8976348507087716801393169956p+1)^{1} \bigr] -
b=-33, p=2, \bigl[ \color{red}\bm{(1p+0)^{5}} \bigr] -
b=-33, p=3, \bigl[ ,(2p+1)^{1} (50p+1)^{1} \bigr] -
b=-33, p=5, \bigl[ (230208p+1)^{1} \bigr] -
b=-33, p=7, \bigl[ ,(4p+1)^{1} ,(28p+1)^{1} (31344p+1)^{1} \bigr] -
b=-33, p=11, \bigl[ ,(2p+1)^{1} ,(170p+1)^{1} (3140364888p+1)^{1} \bigr] -
b=-33, p=13, \bigl[ ,(6p+1)^{1} ,(24p+1)^{1} ,(1516p+1)^{1} (255518842p+1)^{1} \bigr] -
b=-33, p=17, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(7785004916p+1)^{1} (50194069260p+1)^{1} \bigr] -
b=-33, p=19, \bigl[ ,(142p+1)^{1} ,(7540p+1)^{1} ,(2590828p+1)^{1} (5781084070p+1)^{1} \bigr] -
b=-33, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(1160p+1)^{1} ,(321306p+1)^{1} ,(3934922p+1)^{1} (924673484p+1)^{1} \bigr] -
b=-33, p=29, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(26163480p+1)^{1} ,(2269082172p+1)^{1} (71669093619759764p+1)^{1} \bigr] -
b=-33, p=31, \bigl[ ,(129126p+1)^{1} (28100627960666268782546190445822367310p+1)^{1} \bigr] -
b=-33, p=37, \bigl[ ,(186p+1)^{1} ,(54867166p+1)^{1} ,(621406080p+1)^{1} (378848777065970268355524794044p+1)^{1} \bigr] -
b=-33, p=41, \bigl[ ,(16239131408993664350p+1)^{1} (195642006516822005850451400179699663550p+1)^{1} \bigr] -
b=-33, p=43, \bigl[ ,(4p+1)^{1} ,(22p+1)^{1} ,(12694p+1)^{1} ,(557309385432p+1)^{1} (63113665290498526644677490895215047932p+1)^{1} \bigr] -
b=-33, p=47, \bigl[ ,(6p+1)^{1} ,(174p+1)^{1} (63400364622957923369914011982855316174682683833304096826152640p+1)^{1} \bigr] -
b=-32, p=2, \bigl[ \color{magenta}\bm{(15p+1)^{1}} \bigr] -
b=-32, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (110p+1)^{1} \bigr] -
b=-32, p=5, \bigl[ ,(50p+1)^{1} (810p+1)^{1} \bigr] -
b=-32, p=7, \bigl[ ,(6p+1)^{1} ,(40p+1)^{1} (12310p+1)^{1} \bigr] -
b=-32, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(62p+1)^{1} ,(270p+1)^{1} (4446590p+1)^{1} \bigr] -
b=-32, p=13, \bigl[ ,(10p+1)^{1} ,(210p+1)^{1} ,(31530p+1)^{1} (586450p+1)^{1} \bigr] -
b=-32, p=17, \bigl[ ,(2570p+1)^{1} (1578319002121491330p+1)^{1} \bigr] -
b=-32, p=19, \bigl[ ,(120p+1)^{1} ,(9198p+1)^{1} (158491972611276270p+1)^{1} \bigr] -
b=-32, p=23, \bigl[ ,(30p+1)^{1} ,(121574p+1)^{1} ,(81917550p+1)^{1} (15033364572630p+1)^{1} \bigr] -
b=-32, p=29, \bigl[ ,(2p+1)^{1} ,(104592p+1)^{1} ,(260480p+1)^{1} (34475960507748803478753290p+1)^{1} \bigr] -
b=-32, p=31, \bigl[ ,(360p+1)^{1} ,(23091222p+1)^{1} ,(191858168432190p+1)^{1} (939550194940920p+1)^{1} \bigr] -
b=-32, p=37, \bigl[ ,(40p+1)^{1} ,(48p+1)^{1} ,(696786p+1)^{1} ,(760450p+1)^{1} (21038631497240205636232927861440p+1)^{1} \bigr] -
b=-32, p=41, \bigl[ ,(2p+1)^{1} ,(215400456p+1)^{1} (51849282033888720326591314483770679189202557650p+1)^{1} \bigr] -
b=-32, p=43, \bigl[ ,(211270p+1)^{1} ,(68186767614p+1)^{1} (1393130427411759566916980990900272068003040p+1)^{1} \bigr] -
b=-32, p=47, \bigl[ ,(6p+1)^{1} ,(3526990160p+1)^{1} ,(6978858350p+1)^{1} ,(9825487403191430p+1)^{1} (5009731372555151384826270p+1)^{1} \bigr] -
b=-31, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,\color{magenta}\bm{(1p+1)^{1}} (2p+1)^{1} \bigr] -
b=-31, p=3, \bigl[ ,(2p+1)^{2} (6p+1)^{1} \bigr] -
b=-31, p=5, \bigl[ ,(8p+1)^{1} (4364p+1)^{1} \bigr] -
b=-31, p=7, \bigl[ ,(1710p+1)^{1} (10260p+1)^{1} \bigr] -
b=-31, p=11, \bigl[ ,(68840p+1)^{1} (95323910p+1)^{1} \bigr] -
b=-31, p=13, \bigl[ ,(1374p+1)^{1} (3285899611122p+1)^{1} \bigr] -
b=-31, p=17, \bigl[ ,(6p+1)^{1} (402450684861556667238p+1)^{1} \bigr] -
b=-31, p=19, \bigl[ ,(10p+1)^{1} (186610138984313827799620p+1)^{1} \bigr] -
b=-31, p=23, \bigl[ ,(2p+1)^{1} ,(1974541244p+1)^{1} (12739407806743186140p+1)^{1} \bigr] -
b=-31, p=29, \bigl[ ,(2p+1)^{1} ,(63402p+1)^{1} ,(57639375374p+1)^{1} (105553023452297189538p+1)^{1} \bigr] -
b=-31, p=31, \bigl[ ,(12p+1)^{1} ,(52p+1)^{1} ,(2028p+1)^{1} ,(4696p+1)^{1} ,(1154488918846p+1)^{1} (87312587176408p+1)^{1} \bigr] -
b=-31, p=37, \bigl[ ,(26215232082463718491954p+1)^{1} (13190933731948595215031244934p+1)^{1} \bigr] -
b=-31, p=41, \bigl[ ,(172364231373894192p+1)^{1} (1508914418200399601824613067810632026296p+1)^{1} \bigr] -
b=-31, p=43, \bigl[ ,(4p+1)^{1} (56479168960785064437315677401185635608953657666185937768322p+1)^{1} \bigr] -
b=-31, p=47, \bigl[ ,(14p+1)^{1} ,(440p+1)^{1} ,(6868620p+1)^{1} (1876408861887289142548612032748194249375830389378344p+1)^{1} \bigr]
-
b=-30, p=2, \bigl[ (14p+1)^{1} \bigr] -
b=-30, p=3, \bigl[ ,(4p+1)^{1} (22p+1)^{1} \bigr] -
b=-30, p=5, \bigl[ ,(2p+1)^{1} (14252p+1)^{1} \bigr] -
b=-30, p=7, \bigl[ ,(90p+1)^{1} (159720p+1)^{1} \bigr] -
b=-30, p=11, \bigl[ ,(2p+1)^{1} ,(8072p+1)^{1} (25437408p+1)^{1} \bigr] -
b=-30, p=13, \bigl[ ,(42p+1)^{1} ,(15936p+1)^{1} (349107492p+1)^{1} \bigr] -
b=-30, p=17, \bigl[ ,(36p+1)^{1} ,(426p+1)^{1} ,(33278p+1)^{1} (9755844038p+1)^{1} \bigr] -
b=-30, p=19, \bigl[ ,(11934684p+1)^{1} (87020989553055318p+1)^{1} \bigr] -
b=-30, p=23, \bigl[ ,(2p+1)^{1} ,(6452814p+1)^{1} ,(86210964p+1)^{1} (954627953642p+1)^{1} \bigr] -
b=-30, p=29, \bigl[ ,(2p+1)^{1} ,(75319776895532918p+1)^{1} (59237628074273149338p+1)^{1} \bigr] -
b=-30, p=31, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(132p+1)^{1} ,(628p+1)^{1} ,(1572p+1)^{1} ,(3748p+1)^{1} ,(4486649436p+1)^{1} (3303820416756p+1)^{1} \bigr] -
b=-30, p=37, \bigl[ ,(34p+1)^{1} ,(256p+1)^{1} ,(5140p+1)^{1} ,(5341714p+1)^{1} ,(6050148p+1)^{1} (39119431066399340767350p+1)^{1} \bigr] -
b=-30, p=41, \bigl[ ,(68p+1)^{1} (1028909977552331625479326306928506081692746512586397218p+1)^{1} \bigr] -
b=-30, p=43, \bigl[ ,(771804124120876869600580p+1)^{1} (74200742831014849834494068234576110p+1)^{1} \bigr] -
b=-30, p=47, \bigl[ ,(6p+1)^{1} ,(49965675628842341520006p+1)^{1} (2745891434422000637438866279931616741354p+1)^{1} \bigr] -
b=-29, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-29, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (90p+1)^{1} \bigr] -
b=-29, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(6p+1)^{1} (80p+1)^{1} \bigr] -
b=-29, p=7, \bigl[ (82142268p+1)^{1} \bigr] -
b=-29, p=11, \bigl[ ,(510762p+1)^{1} (6580406p+1)^{1} \bigr] -
b=-29, p=13, \bigl[ ,(4p+1)^{1} ,(262p+1)^{1} ,(576p+1)^{1} (19455282p+1)^{1} \bigr] -
b=-29, p=17, \bigl[ ,(116p+1)^{1} ,(228098p+1)^{1} (1859936821118p+1)^{1} \bigr] -
b=-29, p=19, \bigl[ ,(882p+1)^{1} (638908996432395213630p+1)^{1} \bigr] -
b=-29, p=23, \bigl[ ,(2p+1)^{1} (133108871962670853245168620806p+1)^{1} \bigr] -
b=-29, p=29, \bigl[ ,(8p+1)^{1} ,(236724p+1)^{1} ,(327169788p+1)^{1} (194471168231605003008p+1)^{1} \bigr] -
b=-29, p=31, \bigl[ ,(119272p+1)^{1} ,(6211422136p+1)^{1} (3261383983005765690347820p+1)^{1} \bigr] -
b=-29, p=37, \bigl[ ,(34p+1)^{1} ,(264p+1)^{1} ,(515819879040p+1)^{1} (4929777342146324878530025297738p+1)^{1} \bigr] -
b=-29, p=41, \bigl[ ,(506p+1)^{1} ,(19808p+1)^{1} ,(35448p+1)^{1} ,(123308p+1)^{1} ,(90525476p+1)^{1} ,(8538269718p+1)^{1} (4591694520668p+1)^{1} \bigr] -
b=-29, p=43, \bigl[ ,(26452690596p+1)^{1} ,(47140692469962417856p+1)^{1} (256874786458246606390152304p+1)^{1} \bigr] -
b=-29, p=47, \bigl[ ,(79584196146p+1)^{1} ,(29003685959834p+1)^{1} ,(3155221893563850p+1)^{1} (506854468833813272070p+1)^{1} \bigr] -
b=-28, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{3}} \bigr] -
b=-28, p=3, \bigl[ (252p+1)^{1} \bigr] -
b=-28, p=5, \bigl[ ,(2p+1)^{1} (10790p+1)^{1} \bigr] -
b=-28, p=7, \bigl[ ,(1858p+1)^{1} (5110p+1)^{1} \bigr] -
b=-28, p=11, \bigl[ ,(2p+1)^{2} (49146431532p+1)^{1} \bigr] -
b=-28, p=13, \bigl[ ,(42p+1)^{1} ,(172p+1)^{1} ,(8820p+1)^{1} (122926p+1)^{1} \bigr] -
b=-28, p=17, \bigl[ ,(14p+1)^{1} ,(36p+1)^{1} ,(138p+1)^{1} ,(518p+1)^{1} (2676949338p+1)^{1} \bigr] -
b=-28, p=19, \bigl[ (5686577949236675919184764p+1)^{1} \bigr] -
b=-28, p=23, \bigl[ ,(5006610p+1)^{1} ,(6116026980p+1)^{1} (178254316842p+1)^{1} \bigr] -
b=-28, p=29, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(1394p+1)^{1} ,(37052p+1)^{1} (876006529511845602406161998p+1)^{1} \bigr] -
b=-28, p=31, \bigl[ ,(42p+1)^{1} ,(2215837786p+1)^{1} (9042639271516565395869497356p+1)^{1} \bigr] -
b=-28, p=37, \bigl[ ,(27153800266p+1)^{1} (325248344329596037293522270894850649278p+1)^{1} \bigr] -
b=-28, p=41, \bigl[ ,(220704362p+1)^{1} ,(4004291620559832p+1)^{1} (122009346773643642938388131318p+1)^{1} \bigr] -
b=-28, p=43, \bigl[ ,(136p+1)^{1} ,(567112p+1)^{1} (949970157468576922959203695884683981860136539596p+1)^{1} \bigr] -
b=-28, p=47, \bigl[ ,(3730291904p+1)^{1} ,(40261539015656p+1)^{1} (229669175712889246422305069051893531140p+1)^{1} \bigr] -
b=-27, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (6p+1)^{1} \bigr] -
b=-27, p=3, \bigl[ ,(6p+1)^{1} (12p+1)^{1} \bigr] -
b=-27, p=5, \bigl[ ,(6p+1)^{1} ,(12p+1)^{1} (54p+1)^{1} \bigr] -
b=-27, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(6p+1)^{1} ,(78p+1)^{1} (324p+1)^{1} \bigr] -
b=-27, p=11, \bigl[ ,(6p+1)^{1} ,(60p+1)^{1} ,(2310p+1)^{1} (16038p+1)^{1} \bigr] -
b=-27, p=13, \bigl[ ,(6p+1)^{1} ,(12p+1)^{1} ,(222p+1)^{1} ,(780p+1)^{1} (30660p+1)^{1} \bigr] -
b=-27, p=17, \bigl[ ,(6p+1)^{1} ,(18p+1)^{1} ,(36p+1)^{1} ,(60p+1)^{1} ,(1770p+1)^{1} (7597638p+1)^{1} \bigr] -
b=-27, p=19, \bigl[ ,(150p+1)^{1} ,(162p+1)^{1} ,(2838p+1)^{1} ,(5364p+1)^{1} (61174764p+1)^{1} \bigr] -
b=-27, p=23, \bigl[ ,(6p+1)^{1} ,(222p+1)^{1} ,(396p+1)^{1} ,(5766p+1)^{1} ,(64194p+1)^{1} (1023295422p+1)^{1} \bigr] -
b=-27, p=29, \bigl[ ,(12p+1)^{1} ,(18p+1)^{1} ,(210p+1)^{1} ,(4902p+1)^{1} ,(9024p+1)^{1} ,(47700p+1)^{1} ,(185724p+1)^{1} (1291878p+1)^{1} \bigr] -
b=-27, p=31, \bigl[ ,(12p+1)^{1} ,(222p+1)^{1} ,(17466p+1)^{1} ,(98658p+1)^{1} ,(723701448p+1)^{1} (2846420982660p+1)^{1} \bigr] -
b=-27, p=37, \bigl[ ,(6p+1)^{1} ,(498p+1)^{1} ,(2910p+1)^{1} ,(694854p+1)^{1} ,(1533456p+1)^{1} ,(2122680p+1)^{1} (1738547903680536p+1)^{1} \bigr] -
b=-27, p=41, \bigl[ ,(822p+1)^{1} ,(57000p+1)^{1} ,(976818p+1)^{1} ,(3173160396p+1)^{1} ,(380652501966p+1)^{1} (6598709888526p+1)^{1} \bigr] -
b=-27, p=43, \bigl[ ,(36p+1)^{1} ,(630p+1)^{1} ,(38405580p+1)^{1} ,(660365952p+1)^{1} ,(181915223094p+1)^{1} (1908470740665913242p+1)^{1} \bigr] -
b=-27, p=47, \bigl[ ,(6p+1)^{1} ,(360p+1)^{1} ,(5448p+1)^{1} ,(32642126550p+1)^{1} ,(1999008672932491824p+1)^{1} (80817064921701923478p+1)^{1} \bigr] -
b=-26, p=2, \bigl[ (2p+1)^{2} \bigr] -
b=-26, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (10p+1)^{1} \bigr] -
b=-26, p=5, \bigl[ ,(86p+1)^{1} (204p+1)^{1} \bigr] -
b=-26, p=7, \bigl[ ,(10p+1)^{2} (8430p+1)^{1} \bigr] -
b=-26, p=11, \bigl[ (12358062245750p+1)^{1} \bigr] -
b=-26, p=13, \bigl[ ,(72p+1)^{1} ,(496p+1)^{1} ,(2946p+1)^{1} (30544p+1)^{1} \bigr] -
b=-26, p=17, \bigl[ ,(194p+1)^{1} ,(294p+1)^{1} ,(113840p+1)^{1} (77397110p+1)^{1} \bigr] -
b=-26, p=19, \bigl[ ,(12p+1)^{1} (6524402778419281139922p+1)^{1} \bigr] -
b=-26, p=23, \bigl[ ,(2p+1)^{1} ,(50336p+1)^{1} ,(16464060p+1)^{1} (27373217981192p+1)^{1} \bigr] -
b=-26, p=29, \bigl[ ,(3237188p+1)^{1} ,(89414443094p+1)^{1} (567667108012607480p+1)^{1} \bigr] -
b=-26, p=31, \bigl[ ,(166p+1)^{1} ,(491638471981096p+1)^{1} (1114003632082214543088p+1)^{1} \bigr] -
b=-26, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(1740526p+1)^{1} (10570000534233326004731979787465544550p+1)^{1} \bigr] -
b=-26, p=41, \bigl[ ,(236p+1)^{1} ,(37380p+1)^{1} (628920089766421743768350638842232354211071842p+1)^{1} \bigr] -
b=-26, p=43, \bigl[ ,(15844p+1)^{1} (8824453444755052646996782225902119837723617708562842p+1)^{1} \bigr] -
b=-26, p=47, \bigl[ ,(56979674p+1)^{1} (938572692246250128959125042360958843127715368970403244p+1)^{1} \bigr] -
b=-25, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{3}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=-25, p=3, \bigl[ (200p+1)^{1} \bigr] -
b=-25, p=5, \bigl[ ,(8p+1)^{1} (1832p+1)^{1} \bigr] -
b=-25, p=7, \bigl[ (33535800p+1)^{1} \bigr] -
b=-25, p=11, \bigl[ ,(8p+1)^{1} (93666448928p+1)^{1} \bigr] -
b=-25, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} (6398588638816p+1)^{1} \bigr] -
b=-25, p=17, \bigl[ ,(116p+1)^{1} ,(1184p+1)^{1} ,(2664p+1)^{1} (732176628p+1)^{1} \bigr] -
b=-25, p=19, \bigl[ ,(257114112p+1)^{1} (150748743432072p+1)^{1} \bigr] -
b=-25, p=23, \bigl[ (237639710956555246110743902200p+1)^{1} \bigr] -
b=-25, p=29, \bigl[ (46013885304424591363711524705355616400p+1)^{1} \bigr] -
b=-25, p=31, \bigl[ ,(262084023160164888p+1)^{1} (3311333984629679608128p+1)^{1} \bigr] -
b=-25, p=37, \bigl[ ,(264p+1)^{1} ,(1104p+1)^{1} (13790299867464425890019820646454619404760p+1)^{1} \bigr] -
b=-25, p=41, \bigl[ ,(4716p+1)^{1} ,(155000p+1)^{1} ,(28005019080p+1)^{1} (1374953145188356793429243445572p+1)^{1} \bigr] -
b=-25, p=43, \bigl[ ,(4p+1)^{1} ,(50497403884p+1)^{1} (3077478017282873067820566625080476858909736p+1)^{1} \bigr] -
b=-25, p=47, \bigl[ ,(108p+1)^{1} ,(264p+1)^{1} ,(7012200366396p+1)^{1} (19898167329792153375587304604893052579704p+1)^{1} \bigr] -
b=-24, p=2, \bigl[ \color{magenta}\bm{(11p+1)^{1}} \bigr] -
b=-24, p=3, \bigl[ ,(2p+1)^{1} (26p+1)^{1} \bigr] -
b=-24, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (1158p+1)^{1} \bigr] -
b=-24, p=7, \bigl[ (26208408p+1)^{1} \bigr] -
b=-24, p=11, \bigl[ (5533385975160p+1)^{1} \bigr] -
b=-24, p=13, \bigl[ ,(10p+1)^{1} ,(2554p+1)^{1} ,(5910p+1)^{1} (8070p+1)^{1} \bigr] -
b=-24, p=17, \bigl[ ,(6p+1)^{1} ,(596p+1)^{1} (655581835224146p+1)^{1} \bigr] -
b=-24, p=19, \bigl[ (352630589284263480150072p+1)^{1} \bigr] -
b=-24, p=23, \bigl[ ,(4296p+1)^{1} (978124665380833644979152p+1)^{1} \bigr] -
b=-24, p=29, \bigl[ ,(2p+1)^{1} ,(50p+1)^{1} (171107316003380514313589215984320p+1)^{1} \bigr] -
b=-24, p=31, \bigl[ ,(299665483321026p+1)^{1} (849666263511568943513322p+1)^{1} \bigr] -
b=-24, p=37, \bigl[ ,(4p+1)^{1} ,(19584p+1)^{1} ,(94259574330648p+1)^{1} (3356270997170151562985020p+1)^{1} \bigr] -
b=-24, p=41, \bigl[ ,(2p+1)^{1} (4558888310285956811927109239866270908971226364853186p+1)^{1} \bigr] -
b=-24, p=43, \bigl[ ,(4p+1)^{1} ,(70p+1)^{1} ,(480p+1)^{1} (19328018688284471976887528223897403419732225930p+1)^{1} \bigr] -
b=-24, p=47, \bigl[ ,(14p+1)^{1} ,(470p+1)^{1} ,(1025510p+1)^{1} ,(4300268p+1)^{1} ,(273290483534p+1)^{1} (34628699967595250660662700p+1)^{1} \bigr] -
b=-23, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=-23, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (4p+1)^{2} \bigr] -
b=-23, p=5, \bigl[ ,(6p+1)^{1} ,(8p+1)^{1} (42p+1)^{1} \bigr] -
b=-23, p=7, \bigl[ ,(10p+1)^{1} ,(96p+1)^{1} (424p+1)^{1} \bigr] -
b=-23, p=11, \bigl[ (3609127870886p+1)^{1} \bigr] -
b=-23, p=13, \bigl[ (1615501160052780p+1)^{1} \bigr] -
b=-23, p=17, \bigl[ ,(14p+1)^{1} ,(6914p+1)^{1} (12306460349300p+1)^{1} \bigr] -
b=-23, p=19, \bigl[ ,(25990p+1)^{1} ,(168178p+1)^{1} (103700383242p+1)^{1} \bigr] -
b=-23, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(44p+1)^{1} ,(71360p+1)^{1} ,(2288090p+1)^{1} (66175184p+1)^{1} \bigr] -
b=-23, p=29, \bigl[ ,(2p+1)^{1} ,(37102885418p+1)^{1} (69958471186897277401868p+1)^{1} \bigr] -
b=-23, p=31, \bigl[ ,(260866p+1)^{1} ,(74634699088078p+1)^{1} (117464943597139038p+1)^{1} \bigr] -
b=-23, p=37, \bigl[ ,(16p+1)^{1} ,(282317418052786181316p+1)^{1} (44007112743484642811344p+1)^{1} \bigr] -
b=-23, p=41, \bigl[ ,(27668p+1)^{1} ,(1076279180p+1)^{1} (1375230120631910804961331130870498168p+1)^{1} \bigr] -
b=-23, p=43, \bigl[ ,(1524251314p+1)^{1} (529775924209940699437657936387022538752217676p+1)^{1} \bigr] -
b=-23, p=47, \bigl[ ,(19321554207758556p+1)^{1} (9789472202178766040319656173297038243758294p+1)^{1} \bigr] -
b=-22, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-22, p=3, \bigl[ (154p+1)^{1} \bigr] -
b=-22, p=5, \bigl[ (44814p+1)^{1} \bigr] -
b=-22, p=7, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} (12424p+1)^{1} \bigr] -
b=-22, p=11, \bigl[ ,(8p+1)^{1} (25950095546p+1)^{1} \bigr] -
b=-22, p=13, \bigl[ (945853036398270p+1)^{1} \bigr] -
b=-22, p=17, \bigl[ ,(6p+1)^{1} ,(8p+1)^{1} ,(7529466p+1)^{1} (93807578p+1)^{1} \bigr] -
b=-22, p=19, \bigl[ ,(1261458p+1)^{1} (3061421192388240p+1)^{1} \bigr] -
b=-22, p=23, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(20p+1)^{1} ,(60p+1)^{1} ,(84p+1)^{1} (10673671558676630p+1)^{1} \bigr] -
b=-22, p=29, \bigl[ ,(14760p+1)^{1} ,(78747362p+1)^{1} ,(522125592p+1)^{1} (86265977780p+1)^{1} \bigr] -
b=-22, p=31, \bigl[ ,(12p+1)^{1} ,(786089320589790p+1)^{1} (63602055839444208360p+1)^{1} \bigr] -
b=-22, p=37, \bigl[ ,(4p+1)^{1} ,(60p+1)^{1} ,(1308p+1)^{1} ,(263465498431410496p+1)^{1} (351747392278443594p+1)^{1} \bigr] -
b=-22, p=41, \bigl[ ,(2p+1)^{1} ,(4477918088p+1)^{1} (761868691448917044938731529875599341652p+1)^{1} \bigr] -
b=-22, p=43, \bigl[ (5357707300369360677465270773728795817256204058549595634p+1)^{1} \bigr] -
b=-22, p=47, \bigl[ ,(4164p+1)^{1} ,(1824168036p+1)^{1} (68433193519583829801019595356508881417465554p+1)^{1} \bigr] -
b=-21, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} (2p+1)^{1} \bigr] -
b=-21, p=3, \bigl[ (140p+1)^{1} \bigr] -
b=-21, p=5, \bigl[ (37128p+1)^{1} \bigr] -
b=-21, p=7, \bigl[ (11695380p+1)^{1} \bigr] -
b=-21, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(552p+1)^{1} (942048p+1)^{1} \bigr] -
b=-21, p=13, \bigl[ (540113208878040p+1)^{1} \bigr] -
b=-21, p=17, \bigl[ ,(704p+1)^{1} (6711174655534304p+1)^{1} \bigr] -
b=-21, p=19, \bigl[ ,(32088p+1)^{1} (51986832349586484p+1)^{1} \bigr] -
b=-21, p=23, \bigl[ ,(12p+1)^{1} ,(20p+1)^{1} ,(26p+1)^{1} ,(30p+1)^{1} (96340234219337112p+1)^{1} \bigr] -
b=-21, p=29, \bigl[ ,(44p+1)^{1} (271236399845859022689839828918588p+1)^{1} \bigr] -
b=-21, p=31, \bigl[ ,(2518p+1)^{1} (1830588706727557385082715236281098p+1)^{1} \bigr] -
b=-21, p=37, \bigl[ (10268086066974522442092428252601421726520683080p+1)^{1} \bigr] -
b=-21, p=41, \bigl[ ,(30p+1)^{1} ,(43076p+1)^{1} (828909319939460518802524214262117937622882p+1)^{1} \bigr] -
b=-21, p=43, \bigl[ ,(4p+1)^{1} ,(366p+1)^{1} ,(2950p+1)^{1} ,(3938780196p+1)^{1} ,(27053686662p+1)^{1} (11135155620391714650p+1)^{1} \bigr] -
b=-21, p=47, \bigl[ ,(6p+1)^{1} ,(24p+1)^{1} ,(216284p+1)^{1} ,(681630p+1)^{1} ,(4897851666p+1)^{1} (5629030330272122580523664594p+1)^{1} \bigr]
-
b=-20, p=2, \bigl[ \color{magenta}\bm{(9p+1)^{1}} \bigr] -
b=-20, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (42p+1)^{1} \bigr] -
b=-20, p=5, \bigl[ (30476p+1)^{1} \bigr] -
b=-20, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(118p+1)^{1} (1504p+1)^{1} \bigr] -
b=-20, p=11, \bigl[ ,(2p+1)^{1} (38546960286p+1)^{1} \bigr] -
b=-20, p=13, \bigl[ ,(160p+1)^{1} ,(196p+1)^{1} (56569896p+1)^{1} \bigr] -
b=-20, p=17, \bigl[ ,(151046p+1)^{1} ,(155324p+1)^{1} (5414966p+1)^{1} \bigr] -
b=-20, p=19, \bigl[ ,(5781622000p+1)^{1} (119617226020p+1)^{1} \bigr] -
b=-20, p=23, \bigl[ ,(2p+1)^{1} ,(20p+1)^{1} ,(24480p+1)^{1} (142365240254619314p+1)^{1} \bigr] -
b=-20, p=29, \bigl[ ,(60p+1)^{1} ,(377246221905938p+1)^{1} (4628400305347674p+1)^{1} \bigr] -
b=-20, p=31, \bigl[ ,(1306p+1)^{1} ,(2428p+1)^{1} (10824731509661881304308807746p+1)^{1} \bigr] -
b=-20, p=37, \bigl[ ,(4p+1)^{1} ,(9958p+1)^{1} ,(259703755141404p+1)^{1} (3353108250697943081706p+1)^{1} \bigr] -
b=-20, p=41, \bigl[ ,(2p+1)^{1} ,(42p+1)^{1} ,(20115966p+1)^{1} ,(869307746p+1)^{1} (60754876812770996558033600p+1)^{1} \bigr] -
b=-20, p=43, \bigl[ ,(22p+1)^{1} (102861317866971645611659363777435534023044152952554p+1)^{1} \bigr] -
b=-20, p=47, \bigl[ ,(146p+1)^{1} ,(1364p+1)^{1} (32408553092994492550083220038478174529432641483586p+1)^{1} \bigr] -
b=-19, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=-19, p=3, \bigl[ (2p+1)^{3} \bigr] -
b=-19, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (450p+1)^{1} \bigr] -
b=-19, p=7, \bigl[ ,(28p+1)^{1} (32410p+1)^{1} \bigr] -
b=-19, p=11, \bigl[ ,(2p+1)^{1} (23021790296p+1)^{1} \bigr] -
b=-19, p=13, \bigl[ ,(10p+1)^{1} ,(24p+1)^{1} ,(13540p+1)^{1} (22410p+1)^{1} \bigr] -
b=-19, p=17, \bigl[ (16118784875837653488p+1)^{1} \bigr] -
b=-19, p=19, \bigl[ ,(5700p+1)^{1} ,(55222p+1)^{1} (45818008480p+1)^{1} \bigr] -
b=-19, p=23, \bigl[ ,(2p+1)^{1} ,(30p+1)^{1} ,(110p+1)^{1} (6818784099495310476p+1)^{1} \bigr] -
b=-19, p=29, \bigl[ ,(3668p+1)^{1} ,(23125862344244p+1)^{1} (293156205898332p+1)^{1} \bigr] -
b=-19, p=31, \bigl[ ,(48486292p+1)^{1} ,(462755205436p+1)^{1} (327548991587430p+1)^{1} \bigr] -
b=-19, p=37, \bigl[ (278388643947587040669200754395183567419390668p+1)^{1} \bigr] -
b=-19, p=41, \bigl[ ,(2p+1)^{1} ,(89052p+1)^{1} (108038374412883975529868065020723754385198p+1)^{1} \bigr] -
b=-19, p=43, \bigl[ ,(64p+1)^{1} ,(1060414p+1)^{1} ,(1292529947624420730p+1)^{1} (1615277674168136971542p+1)^{1} \bigr] -
b=-19, p=47, \bigl[ ,(6p+1)^{1} ,(236p+1)^{1} ,(296783214p+1)^{1} (30684478811472253320271282010182466319938p+1)^{1} \bigr] -
b=-18, p=2, \bigl[ (8p+1)^{1} \bigr] -
b=-18, p=3, \bigl[ (102p+1)^{1} \bigr] -
b=-18, p=5, \bigl[ ,(2p+1)^{1} (1808p+1)^{1} \bigr] -
b=-18, p=7, \bigl[ (4603158p+1)^{1} \bigr] -
b=-18, p=11, \bigl[ ,(48800p+1)^{1} (572846p+1)^{1} \bigr] -
b=-18, p=13, \bigl[ ,(10p+1)^{1} ,(160p+1)^{1} (309244680p+1)^{1} \bigr] -
b=-18, p=17, \bigl[ ,(8p+1)^{1} ,(26p+1)^{1} (111507934433880p+1)^{1} \bigr] -
b=-18, p=19, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (103256355934587793608p+1)^{1} \bigr] -
b=-18, p=23, \bigl[ (170132067766640567307365622p+1)^{1} \bigr] -
b=-18, p=29, \bigl[ ,(2p+1)^{1} (77785569821525219265423446461472p+1)^{1} \bigr] -
b=-18, p=31, \bigl[ ,(46p+1)^{1} ,(2278p+1)^{1} (13803423950257226896408384998p+1)^{1} \bigr] -
b=-18, p=37, \bigl[ ,(34p+1)^{1} (31484850370871337166744723280530722412624p+1)^{1} \bigr] -
b=-18, p=41, \bigl[ ,(2p+1)^{1} ,(4106p+1)^{1} ,(106203890p+1)^{1} ,(609700272p+1)^{1} (2469035027073357001496p+1)^{1} \bigr] -
b=-18, p=43, \bigl[ ,(119296800p+1)^{1} ,(13894312446p+1)^{1} (378523543053832265250358447824p+1)^{1} \bigr] -
b=-18, p=47, \bigl[ ,(9960p+1)^{1} ,(27374664p+1)^{1} (184991383893360584211679525776490424069046p+1)^{1} \bigr] -
b=-17, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}} \bigr] -
b=-17, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (4p+1)^{1} \bigr] -
b=-17, p=5, \bigl[ ,(2p+1)^{1} ,(14p+1)^{1} (20p+1)^{1} \bigr] -
b=-17, p=7, \bigl[ (3256656p+1)^{1} \bigr] -
b=-17, p=11, \bigl[ ,(2p+1)^{1} ,(86p+1)^{1} (7946852p+1)^{1} \bigr] -
b=-17, p=13, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(5050p+1)^{1} (153984p+1)^{1} \bigr] -
b=-17, p=17, \bigl[ (2703399548648159360p+1)^{1} \bigr] -
b=-17, p=19, \bigl[ ,(24p+1)^{1} ,(82p+1)^{1} ,(154p+1)^{1} ,(16470p+1)^{1} (1071198p+1)^{1} \bigr] -
b=-17, p=23, \bigl[ (48230842755699332856422864p+1)^{1} \bigr] -
b=-17, p=29, \bigl[ ,(12p+1)^{1} ,(812p+1)^{1} ,(100682p+1)^{1} ,(621811542p+1)^{1} (2133750140p+1)^{1} \bigr] -
b=-17, p=31, \bigl[ ,(12p+1)^{1} ,(1188562p+1)^{1} (18163100467991559756144766p+1)^{1} \bigr] -
b=-17, p=37, \bigl[ ,(40p+1)^{1} ,(70p+1)^{1} ,(4667115886p+1)^{1} (7618387900150046780946208p+1)^{1} \bigr] -
b=-17, p=41, \bigl[ ,(30p+1)^{1} ,(1534616p+1)^{1} ,(458488622p+1)^{1} ,(1858615832346p+1)^{1} (3429429410042p+1)^{1} \bigr] -
b=-17, p=43, \bigl[ ,(190p+1)^{1} ,(6491145746620p+1)^{1} (45972448185374297570366981026674p+1)^{1} \bigr] -
b=-17, p=47, \bigl[ (8011778643947672571479144293068900002409342617137928336p+1)^{1} \bigr] -
b=-16, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} (2p+1)^{1} \bigr] -
b=-16, p=3, \bigl[ (80p+1)^{1} \bigr] -
b=-16, p=5, \bigl[ (12336p+1)^{1} \bigr] -
b=-16, p=7, \bigl[ (2255760p+1)^{1} \bigr] -
b=-16, p=11, \bigl[ ,(32p+1)^{1} (266503856p+1)^{1} \bigr] -
b=-16, p=13, \bigl[ ,(66000p+1)^{1} (23750880p+1)^{1} \bigr] -
b=-16, p=17, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(20864p+1)^{1} (169373406048p+1)^{1} \bigr] -
b=-16, p=19, \bigl[ ,(64p+1)^{1} ,(7840p+1)^{1} (1290369207408p+1)^{1} \bigr] -
b=-16, p=23, \bigl[ (12664348227983429922241680p+1)^{1} \bigr] -
b=-16, p=29, \bigl[ ,(2048p+1)^{1} (2837248109211866201116916144p+1)^{1} \bigr] -
b=-16, p=31, \bigl[ ,(9376p+1)^{1} ,(121619440p+1)^{1} (36826747754902480512p+1)^{1} \bigr] -
b=-16, p=37, \bigl[ (567268558309205040166250385313789799834160p+1)^{1} \bigr] -
b=-16, p=41, \bigl[ ,(320p+1)^{1} ,(208833936p+1)^{1} (298630832255258833051375416013472p+1)^{1} \bigr] -
b=-16, p=43, \bigl[ ,(89657232p+1)^{1} ,(1490282575986592p+1)^{1} (33147518025654100636576p+1)^{1} \bigr] -
b=-16, p=47, \bigl[ ,(25491648p+1)^{1} ,(501964736p+1)^{1} ,(95786098423856p+1)^{1} (3858559720265448288p+1)^{1} \bigr] -
b=-15, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-15, p=3, \bigl[ (70p+1)^{1} \bigr] -
b=-15, p=5, \bigl[ ,(6p+1)^{1} (306p+1)^{1} \bigr] -
b=-15, p=7, \bigl[ (1525530p+1)^{1} \bigr] -
b=-15, p=11, \bigl[ ,(2p+1)^{1} (2136797396p+1)^{1} \bigr] -
b=-15, p=13, \bigl[ ,(6p+1)^{1} (118439329866p+1)^{1} \bigr] -
b=-15, p=17, \bigl[ ,(8p+1)^{1} ,(26p+1)^{1} (5968403914410p+1)^{1} \bigr] -
b=-15, p=19, \bigl[ ,(12p+1)^{1} ,(724p+1)^{1} (23147341492294p+1)^{1} \bigr] -
b=-15, p=23, \bigl[ ,(2p+1)^{1} ,(272p+1)^{1} ,(3540p+1)^{1} ,(35882p+1)^{1} (154328342p+1)^{1} \bigr] -
b=-15, p=29, \bigl[ (27550439544954610153518874069740p+1)^{1} \bigr] -
b=-15, p=31, \bigl[ ,(30918p+1)^{1} ,(415193590200p+1)^{1} (470068858222188p+1)^{1} \bigr] -
b=-15, p=37, \bigl[ ,(16p+1)^{1} ,(160217566p+1)^{1} (15743030292569394088548176874p+1)^{1} \bigr] -
b=-15, p=41, \bigl[ ,(2p+1)^{1} (30462089482460362572380592397247478606733826p+1)^{1} \bigr] -
b=-15, p=43, \bigl[ ,(4p+1)^{1} ,(911752p+1)^{1} ,(128371744p+1)^{1} ,(374708639704p+1)^{1} (899175256191186p+1)^{1} \bigr] -
b=-15, p=47, \bigl[ ,(62721711961849734p+1)^{1} (8522275575020394177485626992018804p+1)^{1} \bigr] -
b=-14, p=2, \bigl[ (6p+1)^{1} \bigr] -
b=-14, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (20p+1)^{1} \bigr] -
b=-14, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(14p+1)^{1} (20p+1)^{1} \bigr] -
b=-14, p=7, \bigl[ (1003938p+1)^{1} \bigr] -
b=-14, p=11, \bigl[ ,(2p+1)^{1} (1067079096p+1)^{1} \bigr] -
b=-14, p=13, \bigl[ ,(6p+1)^{1} ,(70p+1)^{1} ,(562p+1)^{1} (7740p+1)^{1} \bigr] -
b=-14, p=17, \bigl[ ,(8p+1)^{1} (872802253594710p+1)^{1} \bigr] -
b=-14, p=19, \bigl[ ,(10p+1)^{1} ,(1420p+1)^{1} (4069081689492p+1)^{1} \bigr] -
b=-14, p=23, \bigl[ ,(6p+1)^{1} ,(42p+1)^{1} ,(866196p+1)^{1} (248508025946p+1)^{1} \bigr] -
b=-14, p=29, \bigl[ ,(2p+1)^{1} ,(3938656020p+1)^{1} (589692649757531160p+1)^{1} \bigr] -
b=-14, p=31, \bigl[ ,(52p+1)^{1} ,(102p+1)^{1} ,(5428p+1)^{1} ,(241188522p+1)^{1} (113516802606p+1)^{1} \bigr] -
b=-14, p=37, \bigl[ ,(7650p+1)^{1} ,(3214020232864326p+1)^{1} (136561825292153514p+1)^{1} \bigr] -
b=-14, p=41, \bigl[ ,(2p+1)^{1} ,(126p+1)^{1} ,(2109792p+1)^{1} ,(2323488p+1)^{1} (45093089866345667845002p+1)^{1} \bigr] -
b=-14, p=43, \bigl[ ,(1584617402655272202p+1)^{1} (437071957216669122194661696p+1)^{1} \bigr] -
b=-14, p=47, \bigl[ ,(24p+1)^{1} ,(36p+1)^{1} ,(5809908p+1)^{1} (2005444026275811202920170835141362066p+1)^{1} \bigr] -
b=-13, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=-13, p=3, \bigl[ (52p+1)^{1} \bigr] -
b=-13, p=5, \bigl[ ,(2p+1)^{1} (482p+1)^{1} \bigr] -
b=-13, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} (3154p+1)^{1} \bigr] -
b=-13, p=11, \bigl[ (11637405156p+1)^{1} \bigr] -
b=-13, p=13, \bigl[ ,(1032p+1)^{1} ,(1564p+1)^{1} (6100p+1)^{1} \bigr] -
b=-13, p=17, \bigl[ (36346285375551840p+1)^{1} \bigr] -
b=-13, p=19, \bigl[ (5495940941261075604p+1)^{1} \bigr] -
b=-13, p=23, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(50p+1)^{1} ,(102p+1)^{1} (3687017433726p+1)^{1} \bigr] -
b=-13, p=29, \bigl[ ,(2p+1)^{1} ,(60p+1)^{1} ,(294716893730p+1)^{1} (565428078852p+1)^{1} \bigr] -
b=-13, p=31, \bigl[ ,(12p+1)^{1} ,(88p+1)^{1} ,(4704232p+1)^{1} (528678191727212976p+1)^{1} \bigr] -
b=-13, p=37, \bigl[ ,(6p+1)^{1} ,(568p+1)^{1} ,(4114p+1)^{1} ,(41862742978p+1)^{1} (287210569722958p+1)^{1} \bigr] -
b=-13, p=41, \bigl[ ,(2p+1)^{1} ,(15572p+1)^{1} ,(3421940126061548p+1)^{1} (1100277582863599370p+1)^{1} \bigr] -
b=-13, p=43, \bigl[ ,(4p+1)^{1} ,(292252p+1)^{1} ,(186069844p+1)^{1} ,(8069349040p+1)^{1} (218395741969776p+1)^{1} \bigr] -
b=-13, p=47, \bigl[ ,(10613854040p+1)^{1} (69046345308194145073786231732291307108p+1)^{1} \bigr] -
b=-12, p=2, \bigl[ \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=-12, p=3, \bigl[ ,(2p+1)^{1} (6p+1)^{1} \bigr] -
b=-12, p=5, \bigl[ (3828p+1)^{1} \bigr] -
b=-12, p=7, \bigl[ ,(30p+1)^{1} (1866p+1)^{1} \bigr] -
b=-12, p=11, \bigl[ (5195862732p+1)^{1} \bigr] -
b=-12, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(6p+1)^{1} ,(2772p+1)^{1} (17106p+1)^{1} \bigr] -
b=-12, p=17, \bigl[ ,(150p+1)^{1} (3935305481730p+1)^{1} \bigr] -
b=-12, p=19, \bigl[ ,(174p+1)^{1} ,(432p+1)^{1} (47645541930p+1)^{1} \bigr] -
b=-12, p=23, \bigl[ ,(36p+1)^{1} ,(540p+1)^{1} (2151723080905932p+1)^{1} \bigr] -
b=-12, p=29, \bigl[ ,(48365388p+1)^{1} (37409517846375187944p+1)^{1} \bigr] -
b=-12, p=31, \bigl[ ,(40758p+1)^{1} (5594208886582563831651666p+1)^{1} \bigr] -
b=-12, p=37, \bigl[ ,(141894p+1)^{1} ,(112183936374p+1)^{1} (811451916198021540p+1)^{1} \bigr] -
b=-12, p=41, \bigl[ ,(300p+1)^{1} ,(41089086p+1)^{1} ,(333108218112p+1)^{1} (1169186840611590p+1)^{1} \bigr] -
b=-12, p=43, \bigl[ ,(1656p+1)^{1} ,(8652564p+1)^{1} ,(238916760p+1)^{1} (166923904997564342856p+1)^{1} \bigr] -
b=-12, p=47, \bigl[ ,(384p+1)^{1} ,(262758p+1)^{1} ,(460050960p+1)^{1} (178840785690164079611959410p+1)^{1} \bigr] -
b=-11, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2p+1)^{1} \bigr] -
b=-11, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (12p+1)^{1} \bigr] -
b=-11, p=5, \bigl[ (2684p+1)^{1} \bigr] -
b=-11, p=7, \bigl[ (231990p+1)^{1} \bigr] -
b=-11, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(18p+1)^{1} (5306p+1)^{1} \bigr] -
b=-11, p=13, \bigl[ ,(4p+1)^{1} ,(70p+1)^{1} (4583382p+1)^{1} \bigr] -
b=-11, p=17, \bigl[ ,(4218p+1)^{1} ,(15576p+1)^{1} (130490p+1)^{1} \bigr] -
b=-11, p=19, \bigl[ ,(10p+1)^{1} ,(12p+1)^{1} ,(4410p+1)^{1} (73191382p+1)^{1} \bigr] -
b=-11, p=23, \bigl[ ,(2p+1)^{1} ,(44p+1)^{1} ,(10494p+1)^{1} (282321971462p+1)^{1} \bigr] -
b=-11, p=29, \bigl[ ,(2p+1)^{1} ,(378607144118p+1)^{1} (7036712566928p+1)^{1} \bigr] -
b=-11, p=31, \bigl[ ,(10p+1)^{1} ,(42p+1)^{1} ,(348p+1)^{1} (118016927046939740362p+1)^{1} \bigr] -
b=-11, p=37, \bigl[ ,(72746331730811800p+1)^{1} (284533599510493540p+1)^{1} \bigr] -
b=-11, p=41, \bigl[ ,(17356782p+1)^{1} ,(29662199328p+1)^{1} (11692159114147813142p+1)^{1} \bigr] -
b=-11, p=43, \bigl[ ,(124p+1)^{1} (218909281979986364895039707723185464862p+1)^{1} \bigr] -
b=-11, p=47, \bigl[ ,(17964p+1)^{1} ,(11692010p+1)^{1} ,(555265028p+1)^{1} (1291488262697961688988p+1)^{1} \bigr]
-
b=-10, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=-10, p=3, \bigl[ ,(2p+1)^{1} (4p+1)^{1} \bigr] -
b=-10, p=5, \bigl[ (1818p+1)^{1} \bigr] -
b=-10, p=7, \bigl[ (129870p+1)^{1} \bigr] -
b=-10, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(372p+1)^{1} (798p+1)^{1} \bigr] -
b=-10, p=13, \bigl[ ,(66p+1)^{1} (81408696p+1)^{1} \bigr] -
b=-10, p=17, \bigl[ ,(6p+1)^{1} ,(236p+1)^{1} (1293754904p+1)^{1} \bigr] -
b=-10, p=19, \bigl[ (47846889952153110p+1)^{1} \bigr] -
b=-10, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(110p+1)^{1} (23904225412692p+1)^{1} \bigr] -
b=-10, p=29, \bigl[ ,(2p+1)^{1} (5313213963126295095903512p+1)^{1} \bigr] -
b=-10, p=31, \bigl[ (29325513196480938416422287390p+1)^{1} \bigr] -
b=-10, p=37, \bigl[ ,(196p+1)^{1} ,(11422974965796p+1)^{1} (8015063440903954p+1)^{1} \bigr] -
b=-10, p=41, \bigl[ ,(65134214180396756p+1)^{1} (83029117800147780422p+1)^{1} \bigr] -
b=-10, p=43, \bigl[ ,(1325800p+1)^{1} ,(50758150p+1)^{1} (169909687362135296482680p+1)^{1} \bigr] -
b=-10, p=47, \bigl[ ,(134p+1)^{1} ,(103299310597778p+1)^{1} (6324738404449766101523658p+1)^{1} \bigr] -
b=-9, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}} \bigr] -
b=-9, p=3, \bigl[ (24p+1)^{1} \bigr] -
b=-9, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (236p+1)^{1} \bigr] -
b=-9, p=7, \bigl[ ,(4p+1)^{1} (2356p+1)^{1} \bigr] -
b=-9, p=11, \bigl[ ,(500p+1)^{1} (51860p+1)^{1} \bigr] -
b=-9, p=13, \bigl[ ,(4p+1)^{1} (368921020p+1)^{1} \bigr] -
b=-9, p=17, \bigl[ ,(56256p+1)^{1} (102578304p+1)^{1} \bigr] -
b=-9, p=19, \bigl[ ,(279028p+1)^{1} (1341073588p+1)^{1} \bigr] -
b=-9, p=23, \bigl[ ,(545804p+1)^{1} (3069624809900p+1)^{1} \bigr] -
b=-9, p=29, \bigl[ ,(428p+1)^{1} (1308452678156172431828p+1)^{1} \bigr] -
b=-9, p=31, \bigl[ ,(45284160p+1)^{1} ,(92279328p+1)^{1} (306465768p+1)^{1} \bigr] -
b=-9, p=37, \bigl[ ,(4p+1)^{1} ,(25780p+1)^{1} (3855669183821754615443016p+1)^{1} \bigr] -
b=-9, p=41, \bigl[ ,(50948p+1)^{1} ,(2701656p+1)^{1} (14022773366271139289396p+1)^{1} \bigr] -
b=-9, p=43, \bigl[ ,(4p+1)^{1} ,(10944p+1)^{1} ,(61429900p+1)^{1} ,(1290079584p+1)^{1} (21005579256p+1)^{1} \bigr] -
b=-9, p=47, \bigl[ ,(11996567016p+1)^{1} (2667750704940537569903784030624p+1)^{1} \bigr] -
b=-8, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=-8, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (6p+1)^{1} \bigr] -
b=-8, p=5, \bigl[ ,(2p+1)^{1} (66p+1)^{1} \bigr] -
b=-8, p=7, \bigl[ ,(6p+1)^{1} (774p+1)^{1} \bigr] -
b=-8, p=11, \bigl[ ,(6p+1)^{1} ,(62p+1)^{1} (1896p+1)^{1} \bigr] -
b=-8, p=13, \bigl[ ,(210p+1)^{1} (1720530p+1)^{1} \bigr] -
b=-8, p=17, \bigl[ ,(18p+1)^{1} ,(168p+1)^{1} ,(384p+1)^{1} (2570p+1)^{1} \bigr] -
b=-8, p=19, \bigl[ ,(30p+1)^{1} ,(9198p+1)^{1} (8445552p+1)^{1} \bigr] -
b=-8, p=23, \bigl[ ,(6p+1)^{1} ,(121574p+1)^{1} (7336955040p+1)^{1} \bigr] -
b=-8, p=29, \bigl[ ,(2p+1)^{1} ,(104592p+1)^{1} (3312992823159090p+1)^{1} \bigr] -
b=-8, p=31, \bigl[ ,(17080998p+1)^{1} ,(23091222p+1)^{1} (93648720p+1)^{1} \bigr] -
b=-8, p=37, \bigl[ ,(48p+1)^{1} ,(90p+1)^{1} ,(474p+1)^{1} ,(696786p+1)^{1} (2912844089514p+1)^{1} \bigr] -
b=-8, p=41, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(4032p+1)^{1} ,(215400456p+1)^{1} (321812632025112p+1)^{1} \bigr] -
b=-8, p=43, \bigl[ ,(24p+1)^{1} ,(37013544p+1)^{1} ,(68186767614p+1)^{1} (364804737150p+1)^{1} \bigr] -
b=-8, p=47, \bigl[ ,(6p+1)^{1} ,(35766p+1)^{1} ,(750490200p+1)^{1} ,(2369131176p+1)^{1} (3526990160p+1)^{1} \bigr] -
b=-7, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=-7, p=3, \bigl[ (14p+1)^{1} \bigr] -
b=-7, p=5, \bigl[ ,(2p+1)^{1} (38p+1)^{1} \bigr] -
b=-7, p=7, \bigl[ ,(16p+1)^{1} (130p+1)^{1} \bigr] -
b=-7, p=11, \bigl[ ,(2p+1)^{1} (976940p+1)^{1} \bigr] -
b=-7, p=13, \bigl[ ,(4p+1)^{1} (17577832p+1)^{1} \bigr] -
b=-7, p=17, \bigl[ (1710518485200p+1)^{1} \bigr] -
b=-7, p=19, \bigl[ ,(18480p+1)^{1} (213580878p+1)^{1} \bigr] -
b=-7, p=23, \bigl[ (148743192065657154p+1)^{1} \bigr] -
b=-7, p=29, \bigl[ (13878904119884395374300p+1)^{1} \bigr] -
b=-7, p=31, \bigl[ ,(12p+1)^{1} ,(314658p+1)^{1} (174855062812668p+1)^{1} \bigr] -
b=-7, p=37, \bigl[ ,(4p+1)^{1} (420871483788716993979075904p+1)^{1} \bigr] -
b=-7, p=41, \bigl[ ,(118278p+1)^{1} ,(219512p+1)^{1} ,(39908750p+1)^{1} (1902671112p+1)^{1} \bigr] -
b=-7, p=43, \bigl[ ,(22p+1)^{1} ,(462p+1)^{1} ,(486p+1)^{1} ,(3804p+1)^{1} ,(5470p+1)^{1} ,(88350p+1)^{1} (110460p+1)^{1} \bigr] -
b=-7, p=47, \bigl[ (13945048714777403283142177443781785786p+1)^{1} \bigr] -
b=-6, p=2, \bigl[ (2p+1)^{1} \bigr] -
b=-6, p=3, \bigl[ (10p+1)^{1} \bigr] -
b=-6, p=5, \bigl[ ,(2p+1)^{1} (20p+1)^{1} \bigr] -
b=-6, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} (28p+1)^{1} \bigr] -
b=-6, p=11, \bigl[ (4711650p+1)^{1} \bigr] -
b=-6, p=13, \bigl[ ,(4p+1)^{1} ,(72p+1)^{1} (2890p+1)^{1} \bigr] -
b=-6, p=17, \bigl[ ,(11208p+1)^{1} (746526p+1)^{1} \bigr] -
b=-6, p=19, \bigl[ ,(94p+1)^{1} (2563879228p+1)^{1} \bigr] -
b=-6, p=23, \bigl[ ,(4954700p+1)^{1} (43043510p+1)^{1} \bigr] -
b=-6, p=29, \bigl[ ,(2p+1)^{1} ,(1128p+1)^{1} (94041129772028p+1)^{1} \bigr] -
b=-6, p=31, \bigl[ (6112642941587097453450p+1)^{1} \bigr] -
b=-6, p=37, \bigl[ ,(106p+1)^{1} ,(29642236066p+1)^{1} (55534837614p+1)^{1} \bigr] -
b=-6, p=41, \bigl[ ,(2p+1)^{1} ,(696p+1)^{1} (117986674726269375000980p+1)^{1} \bigr] -
b=-6, p=43, \bigl[ (9592620665748327437386015717410p+1)^{1} \bigr] -
b=-6, p=47, \bigl[ (11373990733208995562354210295740970p+1)^{1} \bigr] -
b=-5, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}} \bigr] -
b=-5, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2p+1)^{1} \bigr] -
b=-5, p=5, \bigl[ (104p+1)^{1} \bigr] -
b=-5, p=7, \bigl[ ,(4p+1)^{1} (64p+1)^{1} \bigr] -
b=-5, p=11, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} (480p+1)^{1} \bigr] -
b=-5, p=13, \bigl[ ,(402p+1)^{1} (2994p+1)^{1} \bigr] -
b=-5, p=17, \bigl[ ,(180p+1)^{1} (2443580p+1)^{1} \bigr] -
b=-5, p=19, \bigl[ ,(40p+1)^{1} ,(1032p+1)^{1} (11212p+1)^{1} \bigr] -
b=-5, p=23, \bigl[ ,(2p+1)^{1} (1837947726654p+1)^{1} \bigr] -
b=-5, p=29, \bigl[ ,(175754p+1)^{1} (210028183578p+1)^{1} \bigr] -
b=-5, p=31, \bigl[ ,(42p+1)^{1} ,(684100p+1)^{1} (906006826p+1)^{1} \bigr] -
b=-5, p=37, \bigl[ ,(246p+1)^{1} ,(784060p+1)^{1} (1241085226618p+1)^{1} \bigr] -
b=-5, p=41, \bigl[ ,(2p+1)^{1} ,(1062p+1)^{1} ,(5400p+1)^{1} (231025039235988p+1)^{1} \bigr] -
b=-5, p=43, \bigl[ ,(36p+1)^{1} ,(222p+1)^{1} ,(182944374p+1)^{1} (37877789496p+1)^{1} \bigr] -
b=-5, p=47, \bigl[ ,(44p+1)^{1} ,(338058644p+1)^{1} (76646212998069380p+1)^{1} \bigr] -
b=-4, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=-4, p=3, \bigl[ (4p+1)^{1} \bigr] -
b=-4, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (8p+1)^{1} \bigr] -
b=-4, p=7, \bigl[ ,(4p+1)^{1} (16p+1)^{1} \bigr] -
b=-4, p=11, \bigl[ ,(36p+1)^{1} (192p+1)^{1} \bigr] -
b=-4, p=13, \bigl[ ,(4p+1)^{1} ,(12p+1)^{1} (124p+1)^{1} \bigr] -
b=-4, p=17, \bigl[ ,(8p+1)^{1} ,(56p+1)^{1} (1548p+1)^{1} \bigr] -
b=-4, p=19, \bigl[ ,(12p+1)^{1} ,(24p+1)^{1} (27648p+1)^{1} \bigr] -
b=-4, p=23, \bigl[ ,(12p+1)^{1} ,(44p+1)^{1} ,(72p+1)^{1} (1316p+1)^{1} \bigr] -
b=-4, p=29, \bigl[ ,(3702332p+1)^{1} (18513920p+1)^{1} \bigr] -
b=-4, p=31, \bigl[ ,(180p+1)^{1} ,(280p+1)^{1} ,(1596p+1)^{1} (12412p+1)^{1} \bigr] -
b=-4, p=37, \bigl[ ,(4p+1)^{1} ,(16p+1)^{1} ,(4985976p+1)^{1} (6264048p+1)^{1} \bigr] -
b=-4, p=41, \bigl[ ,(248p+1)^{1} ,(4428p+1)^{1} ,(295428p+1)^{1} (1054868p+1)^{1} \bigr] -
b=-4, p=43, \bigl[ ,(4p+1)^{1} ,(2364p+1)^{1} ,(11632p+1)^{1} (40912041060p+1)^{1} \bigr] -
b=-4, p=47, \bigl[ ,(80p+1)^{1} ,(159235044p+1)^{1} (2994414288896p+1)^{1} \bigr] -
b=-3, p=2, \bigl[ \color{red}\bm{(1p+0)^{1}} \bigr] -
b=-3, p=3, \bigl[ (2p+1)^{1} \bigr] -
b=-3, p=5, \bigl[ (12p+1)^{1} \bigr] -
b=-3, p=7, \bigl[ (78p+1)^{1} \bigr] -
b=-3, p=11, \bigl[ ,(6p+1)^{1} (60p+1)^{1} \bigr] -
b=-3, p=13, \bigl[ (30660p+1)^{1} \bigr] -
b=-3, p=17, \bigl[ ,(6p+1)^{1} ,(18p+1)^{1} (60p+1)^{1} \bigr] -
b=-3, p=19, \bigl[ ,(150p+1)^{1} (5364p+1)^{1} \bigr] -
b=-3, p=23, \bigl[ (1023295422p+1)^{1} \bigr] -
b=-3, p=29, \bigl[ ,(18p+1)^{1} ,(210p+1)^{1} (185724p+1)^{1} \bigr] -
b=-3, p=31, \bigl[ ,(222p+1)^{1} (723701448p+1)^{1} \bigr] -
b=-3, p=37, \bigl[ ,(498p+1)^{1} ,(2910p+1)^{1} (1533456p+1)^{1} \bigr] -
b=-3, p=41, \bigl[ ,(822p+1)^{1} (6598709888526p+1)^{1} \bigr] -
b=-3, p=43, \bigl[ (1908470740665913242p+1)^{1} \bigr] -
b=-3, p=47, \bigl[ ,(360p+1)^{1} ,(5448p+1)^{1} (32642126550p+1)^{1} \bigr] -
b=-2, p=2, \bigl[ \bigr] -
b=-2, p=3, \bigl[ \color{red}\bm{(1p+0)^{1}} \bigr] -
b=-2, p=5, \bigl[ (2p+1)^{1} \bigr] -
b=-2, p=7, \bigl[ (6p+1)^{1} \bigr] -
b=-2, p=11, \bigl[ (62p+1)^{1} \bigr] -
b=-2, p=13, \bigl[ (210p+1)^{1} \bigr] -
b=-2, p=17, \bigl[ (2570p+1)^{1} \bigr] -
b=-2, p=19, \bigl[ (9198p+1)^{1} \bigr] -
b=-2, p=23, \bigl[ (121574p+1)^{1} \bigr] -
b=-2, p=29, \bigl[ ,(2p+1)^{1} (104592p+1)^{1} \bigr] -
b=-2, p=31, \bigl[ (23091222p+1)^{1} \bigr] -
b=-2, p=37, \bigl[ ,(48p+1)^{1} (696786p+1)^{1} \bigr] -
b=-2, p=41, \bigl[ ,(2p+1)^{1} (215400456p+1)^{1} \bigr] -
b=-2, p=43, \bigl[ (68186767614p+1)^{1} \bigr] -
b=-2, p=47, \bigl[ ,(6p+1)^{1} (3526990160p+1)^{1} \bigr]
-
b=2, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=2, p=3, \bigl[ (2p+1)^{1} \bigr] -
b=2, p=5, \bigl[ (6p+1)^{1} \bigr] -
b=2, p=7, \bigl[ (18p+1)^{1} \bigr] -
b=2, p=11, \bigl[ ,(2p+1)^{1} (8p+1)^{1} \bigr] -
b=2, p=13, \bigl[ (630p+1)^{1} \bigr] -
b=2, p=17, \bigl[ (7710p+1)^{1} \bigr] -
b=2, p=19, \bigl[ (27594p+1)^{1} \bigr] -
b=2, p=23, \bigl[ ,(2p+1)^{1} (7760p+1)^{1} \bigr] -
b=2, p=29, \bigl[ ,(8p+1)^{1} ,(38p+1)^{1} (72p+1)^{1} \bigr] -
b=2, p=31, \bigl[ (69273666p+1)^{1} \bigr] -
b=2, p=37, \bigl[ ,(6p+1)^{1} (16657248p+1)^{1} \bigr] -
b=2, p=41, \bigl[ ,(326p+1)^{1} (4012472p+1)^{1} \bigr] -
b=2, p=43, \bigl[ ,(10p+1)^{1} ,(226p+1)^{1} (48834p+1)^{1} \bigr] -
b=2, p=47, \bigl[ ,(50p+1)^{1} ,(96p+1)^{1} (282224p+1)^{1} \bigr] -
b=3, p=2, \bigl[ \color{red}\bm{(1p+0)^{2}} \bigr] -
b=3, p=3, \bigl[ (4p+1)^{1} \bigr] -
b=3, p=5, \bigl[ (2p+1)^{2} \bigr] -
b=3, p=7, \bigl[ (156p+1)^{1} \bigr] -
b=3, p=11, \bigl[ ,(2p+1)^{1} (350p+1)^{1} \bigr] -
b=3, p=13, \bigl[ (61320p+1)^{1} \bigr] -
b=3, p=17, \bigl[ ,(110p+1)^{1} (2030p+1)^{1} \bigr] -
b=3, p=19, \bigl[ ,(84p+1)^{1} (19152p+1)^{1} \bigr] -
b=3, p=23, \bigl[ ,(2p+1)^{1} (43544486p+1)^{1} \bigr] -
b=3, p=29, \bigl[ ,(2p+1)^{1} ,(984p+1)^{1} (702794p+1)^{1} \bigr] -
b=3, p=31, \bigl[ ,(22p+1)^{1} ,(3312p+1)^{1} (142066p+1)^{1} \bigr] -
b=3, p=37, \bigl[ ,(353998p+1)^{1} (464571046p+1)^{1} \bigr] -
b=3, p=41, \bigl[ ,(2p+1)^{1} ,(61632p+1)^{1} (2120748698p+1)^{1} \bigr] -
b=3, p=43, \bigl[ ,(10p+1)^{1} (8856012717707254p+1)^{1} \bigr] -
b=3, p=47, \bigl[ ,(26p+1)^{1} ,(468p+1)^{1} ,(108780p+1)^{1} (2056526p+1)^{1} \bigr] -
b=4, p=2, \bigl[ (2p+1)^{1} \bigr] -
b=4, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2p+1)^{1} \bigr] -
b=4, p=5, \bigl[ ,(2p+1)^{1} (6p+1)^{1} \bigr] -
b=4, p=7, \bigl[ ,(6p+1)^{1} (18p+1)^{1} \bigr] -
b=4, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} (62p+1)^{1} \bigr] -
b=4, p=13, \bigl[ ,(210p+1)^{1} (630p+1)^{1} \bigr] -
b=4, p=17, \bigl[ ,(2570p+1)^{1} (7710p+1)^{1} \bigr] -
b=4, p=19, \bigl[ ,(9198p+1)^{1} (27594p+1)^{1} \bigr] -
b=4, p=23, \bigl[ ,(2p+1)^{1} ,(7760p+1)^{1} (121574p+1)^{1} \bigr] -
b=4, p=29, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(38p+1)^{1} ,(72p+1)^{1} (104592p+1)^{1} \bigr] -
b=4, p=31, \bigl[ ,(23091222p+1)^{1} (69273666p+1)^{1} \bigr] -
b=4, p=37, \bigl[ ,(6p+1)^{1} ,(48p+1)^{1} ,(696786p+1)^{1} (16657248p+1)^{1} \bigr] -
b=4, p=41, \bigl[ ,(2p+1)^{1} ,(326p+1)^{1} ,(4012472p+1)^{1} (215400456p+1)^{1} \bigr] -
b=4, p=43, \bigl[ ,(10p+1)^{1} ,(226p+1)^{1} ,(48834p+1)^{1} (68186767614p+1)^{1} \bigr] -
b=4, p=47, \bigl[ ,(6p+1)^{1} ,(50p+1)^{1} ,(96p+1)^{1} ,(282224p+1)^{1} (3526990160p+1)^{1} \bigr] -
b=5, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=5, p=3, \bigl[ (10p+1)^{1} \bigr] -
b=5, p=5, \bigl[ ,(2p+1)^{1} (14p+1)^{1} \bigr] -
b=5, p=7, \bigl[ (2790p+1)^{1} \bigr] -
b=5, p=11, \bigl[ (1109730p+1)^{1} \bigr] -
b=5, p=13, \bigl[ (23475060p+1)^{1} \bigr] -
b=5, p=17, \bigl[ ,(24p+1)^{1} (27432024p+1)^{1} \bigr] -
b=5, p=19, \bigl[ ,(10p+1)^{1} ,(330p+1)^{1} (209530p+1)^{1} \bigr] -
b=5, p=23, \bigl[ ,(390p+1)^{1} (14443798320p+1)^{1} \bigr] -
b=5, p=29, \bigl[ ,(2p+1)^{1} ,(1230p+1)^{1} (762965394632p+1)^{1} \bigr] -
b=5, p=31, \bigl[ ,(60p+1)^{1} (20179113176567370p+1)^{1} \bigr] -
b=5, p=37, \bigl[ ,(4p+1)^{1} ,(377620810p+1)^{1} (236148142074p+1)^{1} \bigr] -
b=5, p=41, \bigl[ ,(54591128p+1)^{1} (123885479102846048p+1)^{1} \bigr] -
b=5, p=43, \bigl[ ,(38244480p+1)^{1} (4019245399972462530p+1)^{1} \bigr] -
b=5, p=47, \bigl[ (3779482637021809499314490784990p+1)^{1} \bigr] -
b=6, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=6, p=3, \bigl[ (14p+1)^{1} \bigr] -
b=6, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (62p+1)^{1} \bigr] -
b=6, p=7, \bigl[ (7998p+1)^{1} \bigr] -
b=6, p=11, \bigl[ ,(2p+1)^{1} (286796p+1)^{1} \bigr] -
b=6, p=13, \bigl[ ,(264p+1)^{1} (58530p+1)^{1} \bigr] -
b=6, p=17, \bigl[ ,(14p+1)^{1} ,(24p+1)^{1} ,(66p+1)^{1} (1814p+1)^{1} \bigr] -
b=6, p=19, \bigl[ ,(10p+1)^{1} (33582790852p+1)^{1} \bigr] -
b=6, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(140p+1)^{1} (326345430p+1)^{1} \bigr] -
b=6, p=29, \bigl[ (254107953701992365402p+1)^{1} \bigr] -
b=6, p=31, \bigl[ ,(172p+1)^{1} (1604669063983112026p+1)^{1} \bigr] -
b=6, p=37, \bigl[ ,(4p+1)^{1} ,(214p+1)^{1} ,(330p+1)^{1} ,(69454p+1)^{1} (9034779076p+1)^{1} \bigr] -
b=6, p=41, \bigl[ ,(210930p+1)^{1} (45240265509426766516560p+1)^{1} \bigr] -
b=6, p=43, \bigl[ ,(4p+1)^{1} ,(10p+1)^{1} ,(171706p+1)^{1} (24394276816975853386p+1)^{1} \bigr] -
b=6, p=47, \bigl[ ,(19806624p+1)^{1} ,(959805024p+1)^{1} (379185492759918p+1)^{1} \bigr] -
b=7, p=2, \bigl[ \color{red}\bm{(1p+0)^{3}} \bigr] -
b=7, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (6p+1)^{1} \bigr] -
b=7, p=5, \bigl[ (560p+1)^{1} \bigr] -
b=7, p=7, \bigl[ ,(4p+1)^{1} (676p+1)^{1} \bigr] -
b=7, p=11, \bigl[ ,(102p+1)^{1} (26678p+1)^{1} \bigr] -
b=7, p=13, \bigl[ (1242166800p+1)^{1} \bigr] -
b=7, p=17, \bigl[ ,(824p+1)^{1} (162801864p+1)^{1} \bigr] -
b=7, p=19, \bigl[ ,(22p+1)^{1} (238640354758p+1)^{1} \bigr] -
b=7, p=23, \bigl[ ,(2p+1)^{1} ,(134p+1)^{1} (1368687973772p+1)^{1} \bigr] -
b=7, p=29, \bigl[ ,(2p+1)^{1} ,(4397940p+1)^{1} (2459204240862p+1)^{1} \bigr] -
b=7, p=31, \bigl[ ,(10p+1)^{1} ,(682p+1)^{1} (129002847722563368p+1)^{1} \bigr] -
b=7, p=37, \bigl[ ,(6p+1)^{1} ,(78p+1)^{1} (129874192148440966702200p+1)^{1} \bigr] -
b=7, p=41, \bigl[ ,(2p+1)^{1} ,(500388p+1)^{1} (106393642347050455026702p+1)^{1} \bigr] -
b=7, p=43, \bigl[ ,(3860549019591832p+1)^{1} (50989234006306480p+1)^{1} \bigr] -
b=7, p=47, \bigl[ ,(291974824457930p+1)^{1} (1354925787157841499138p+1)^{1} \bigr] -
b=8, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=8, p=3, \bigl[ (24p+1)^{1} \bigr] -
b=8, p=5, \bigl[ ,(6p+1)^{1} (30p+1)^{1} \bigr] -
b=8, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(18p+1)^{1} (48p+1)^{1} \bigr] -
b=8, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} (54498p+1)^{1} \bigr] -
b=8, p=13, \bigl[ ,(6p+1)^{1} ,(630p+1)^{1} (9336p+1)^{1} \bigr] -
b=8, p=17, \bigl[ ,(6p+1)^{1} ,(126p+1)^{1} ,(654p+1)^{1} (7710p+1)^{1} \bigr] -
b=8, p=19, \bigl[ ,(1704p+1)^{1} ,(27594p+1)^{1} (63834p+1)^{1} \bigr] -
b=8, p=23, \bigl[ ,(2p+1)^{1} ,(7760p+1)^{1} (437072997306p+1)^{1} \bigr] -
b=8, p=29, \bigl[ ,(8p+1)^{1} ,(38p+1)^{1} ,(72p+1)^{1} ,(144p+1)^{1} (339921970878p+1)^{1} \bigr] -
b=8, p=31, \bigl[ ,(69273666p+1)^{1} (21252009311404938p+1)^{1} \bigr] -
b=8, p=37, \bigl[ ,(6p+1)^{1} ,(8694p+1)^{1} ,(710688p+1)^{1} ,(8622168p+1)^{1} (16657248p+1)^{1} \bigr] -
b=8, p=41, \bigl[ ,(326p+1)^{1} ,(94806p+1)^{1} ,(4012472p+1)^{1} (4334689120833552p+1)^{1} \bigr] -
b=8, p=43, \bigl[ ,(10p+1)^{1} ,(226p+1)^{1} ,(48834p+1)^{1} (257047350349983598917666p+1)^{1} \bigr] -
b=8, p=47, \bigl[ ,(50p+1)^{1} ,(96p+1)^{1} ,(282224p+1)^{1} ,(93097410p+1)^{1} (13759043303260824p+1)^{1} \bigr] -
b=9, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2p+1)^{1} \bigr] -
b=9, p=3, \bigl[ ,(2p+1)^{1} (4p+1)^{1} \bigr] -
b=9, p=5, \bigl[ ,(2p+1)^{2} (12p+1)^{1} \bigr] -
b=9, p=7, \bigl[ ,(78p+1)^{1} (156p+1)^{1} \bigr] -
b=9, p=11, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(60p+1)^{1} (350p+1)^{1} \bigr] -
b=9, p=13, \bigl[ ,(30660p+1)^{1} (61320p+1)^{1} \bigr] -
b=9, p=17, \bigl[ ,(6p+1)^{1} ,(18p+1)^{1} ,(60p+1)^{1} ,(110p+1)^{1} (2030p+1)^{1} \bigr] -
b=9, p=19, \bigl[ ,(84p+1)^{1} ,(150p+1)^{1} ,(5364p+1)^{1} (19152p+1)^{1} \bigr] -
b=9, p=23, \bigl[ ,(2p+1)^{1} ,(43544486p+1)^{1} (1023295422p+1)^{1} \bigr] -
b=9, p=29, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(210p+1)^{1} ,(984p+1)^{1} ,(185724p+1)^{1} (702794p+1)^{1} \bigr] -
b=9, p=31, \bigl[ ,(22p+1)^{1} ,(222p+1)^{1} ,(3312p+1)^{1} ,(142066p+1)^{1} (723701448p+1)^{1} \bigr] -
b=9, p=37, \bigl[ ,(498p+1)^{1} ,(2910p+1)^{1} ,(353998p+1)^{1} ,(1533456p+1)^{1} (464571046p+1)^{1} \bigr] -
b=9, p=41, \bigl[ ,(2p+1)^{1} ,(822p+1)^{1} ,(61632p+1)^{1} ,(2120748698p+1)^{1} (6598709888526p+1)^{1} \bigr] -
b=9, p=43, \bigl[ ,(10p+1)^{1} ,(8856012717707254p+1)^{1} (1908470740665913242p+1)^{1} \bigr] -
b=9, p=47, \bigl[ ,(26p+1)^{1} ,(360p+1)^{1} ,(468p+1)^{1} ,(5448p+1)^{1} ,(108780p+1)^{1} ,(2056526p+1)^{1} (32642126550p+1)^{1} \bigr] -
b=10, p=2, \bigl[ \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=10, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (12p+1)^{1} \bigr] -
b=10, p=5, \bigl[ ,(8p+1)^{1} (54p+1)^{1} \bigr] -
b=10, p=7, \bigl[ ,(34p+1)^{1} (664p+1)^{1} \bigr] -
b=10, p=11, \bigl[ ,(1968p+1)^{1} (46658p+1)^{1} \bigr] -
b=10, p=13, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} (20413204p+1)^{1} \bigr] -
b=10, p=17, \bigl[ ,(121866p+1)^{1} (315483668p+1)^{1} \bigr] -
b=10, p=19, \bigl[ (58479532163742690p+1)^{1} \bigr] -
b=10, p=23, \bigl[ (483091787439613526570p+1)^{1} \bigr] -
b=10, p=29, \bigl[ ,(110p+1)^{1} ,(578p+1)^{1} ,(1484p+1)^{1} ,(2138p+1)^{1} (2684270324p+1)^{1} \bigr] -
b=10, p=31, \bigl[ ,(90p+1)^{1} ,(223978p+1)^{1} (1849561776251309818p+1)^{1} \bigr] -
b=10, p=37, \bigl[ ,(54814p+1)^{1} ,(6692676p+1)^{1} (59794440453248739676p+1)^{1} \bigr] -
b=10, p=41, \bigl[ ,(2p+1)^{1} ,(30p+1)^{1} ,(13146p+1)^{1} (4921066095129824481674583960p+1)^{1} \bigr] -
b=10, p=43, \bigl[ ,(4p+1)^{1} ,(35530p+1)^{1} ,(45662947029172p+1)^{1} (49790511985942480p+1)^{1} \bigr] -
b=10, p=47, \bigl[ ,(747264p+1)^{1} (6731125718371457978753322426355880474p+1)^{1} \bigr]
-
b=11, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=11, p=3, \bigl[ ,(2p+1)^{1} (6p+1)^{1} \bigr] -
b=11, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (644p+1)^{1} \bigr] -
b=11, p=7, \bigl[ ,(6p+1)^{1} (6474p+1)^{1} \bigr] -
b=11, p=11, \bigl[ ,(1436p+1)^{1} (164192p+1)^{1} \bigr] -
b=11, p=13, \bigl[ ,(84p+1)^{1} (242963700p+1)^{1} \bigr] -
b=11, p=17, \bigl[ (2973217814701728p+1)^{1} \bigr] -
b=11, p=19, \bigl[ (321889949728497612p+1)^{1} \bigr] -
b=11, p=23, \bigl[ ,(36p+1)^{1} ,(1255602p+1)^{1} (162618347010p+1)^{1} \bigr] -
b=11, p=29, \bigl[ ,(18p+1)^{1} (10458952312068909965150898p+1)^{1} \bigr] -
b=11, p=31, \bigl[ ,(1618p+1)^{1} ,(78340p+1)^{1} (5082966373696847058p+1)^{1} \bigr] -
b=11, p=37, \bigl[ ,(70p+1)^{1} ,(996084p+1)^{1} ,(3679776p+1)^{1} (70686976186262050p+1)^{1} \bigr] -
b=11, p=41, \bigl[ ,(2p+1)^{1} ,(30p+1)^{1} ,(660p+1)^{1} ,(12420p+1)^{1} ,(343712p+1)^{1} ,(728450p+1)^{1} (20491216478p+1)^{1} \bigr] -
b=11, p=43, \bigl[ ,(32936244692862p+1)^{1} (989178048641471349905015226p+1)^{1} \bigr] -
b=11, p=47, \bigl[ ,(44p+1)^{1} ,(482274022688408p+1)^{1} (400134617911163629696747104p+1)^{1} \bigr] -
b=12, p=2, \bigl[ (6p+1)^{1} \bigr] -
b=12, p=3, \bigl[ (52p+1)^{1} \bigr] -
b=12, p=5, \bigl[ (4524p+1)^{1} \bigr] -
b=12, p=7, \bigl[ ,(94p+1)^{1} (706p+1)^{1} \bigr] -
b=12, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (24271008p+1)^{1} \bigr] -
b=12, p=13, \bigl[ ,(36732p+1)^{1} (1566864p+1)^{1} \bigr] -
b=12, p=17, \bigl[ ,(158450p+1)^{1} (4404516590p+1)^{1} \bigr] -
b=12, p=19, \bigl[ (1528612437180014004p+1)^{1} \bigr] -
b=12, p=23, \bigl[ ,(2p+1)^{1} ,(1734402192p+1)^{1} (13966019054p+1)^{1} \bigr] -
b=12, p=29, \bigl[ ,(2p+1)^{1} ,(854p+1)^{1} ,(12722p+1)^{1} (115023206499068018p+1)^{1} \bigr] -
b=12, p=31, \bigl[ ,(12p+1)^{1} ,(4093020p+1)^{1} ,(753678322p+1)^{1} (7554437542p+1)^{1} \bigr] -
b=12, p=37, \bigl[ ,(106320p+1)^{1} (5312450447386111529431901441820p+1)^{1} \bigr] -
b=12, p=41, \bigl[ ,(2p+1)^{1} ,(48241416p+1)^{1} (2382168896595609426618782956070p+1)^{1} \bigr] -
b=12, p=43, \bigl[ ,(10p+1)^{1} ,(286356p+1)^{1} ,(312662014p+1)^{1} (752552519966570347985220p+1)^{1} \bigr] -
b=12, p=47, \bigl[ ,(225898935978660p+1)^{1} (95943592893056341227702299506368p+1)^{1} \bigr] -
b=13, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=13, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (20p+1)^{1} \bigr] -
b=13, p=5, \bigl[ (6188p+1)^{1} \bigr] -
b=13, p=7, \bigl[ (747006p+1)^{1} \bigr] -
b=13, p=11, \bigl[ ,(2p+1)^{1} ,(38p+1)^{1} ,(78p+1)^{1} (1640p+1)^{1} \bigr] -
b=13, p=13, \bigl[ ,(4p+1)^{1} ,(20310p+1)^{1} (138742p+1)^{1} \bigr] -
b=13, p=17, \bigl[ ,(6p+1)^{1} ,(26p+1)^{1} (929321256324p+1)^{1} \bigr] -
b=13, p=19, \bigl[ ,(677154p+1)^{1} (498365263392p+1)^{1} \bigr] -
b=13, p=23, \bigl[ ,(60p+1)^{1} (109545449667362225354p+1)^{1} \bigr] -
b=13, p=29, \bigl[ ,(68p+1)^{1} ,(98p+1)^{1} ,(122p+1)^{1} (29173831171547340240p+1)^{1} \bigr] -
b=13, p=31, \bigl[ ,(10p+1)^{1} ,(36p+1)^{1} (263564806820366561566714528p+1)^{1} \bigr] -
b=13, p=37, \bigl[ ,(40p+1)^{1} ,(1824207516p+1)^{1} ,(115885291804p+1)^{1} (863893087836p+1)^{1} \bigr] -
b=13, p=41, \bigl[ ,(164410904042p+1)^{1} (1415786828715838643232432856746p+1)^{1} \bigr] -
b=13, p=43, \bigl[ ,(2782p+1)^{1} (12855389388348064631970644285244132616996p+1)^{1} \bigr] -
b=13, p=47, \bigl[ ,(3914p+1)^{1} ,(408853968p+1)^{1} (11367666903870409252205767432476420p+1)^{1} \bigr] -
b=14, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} (2p+1)^{1} \bigr] -
b=14, p=3, \bigl[ (70p+1)^{1} \bigr] -
b=14, p=5, \bigl[ ,(2p+1)^{1} (752p+1)^{1} \bigr] -
b=14, p=7, \bigl[ (1158390p+1)^{1} \bigr] -
b=14, p=11, \bigl[ ,(6p+1)^{1} ,(366p+1)^{1} (104958p+1)^{1} \bigr] -
b=14, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(12p+1)^{1} (2301096090p+1)^{1} \bigr] -
b=14, p=17, \bigl[ ,(6p+1)^{1} (1339513540804428p+1)^{1} \bigr] -
b=14, p=19, \bigl[ (24195562586837710110p+1)^{1} \bigr] -
b=14, p=23, \bigl[ ,(2p+1)^{1} ,(20p+1)^{1} ,(102p+1)^{1} ,(462p+1)^{1} ,(97820p+1)^{1} (631532p+1)^{1} \bigr] -
b=14, p=29, \bigl[ ,(452p+1)^{1} ,(882115518p+1)^{1} (13673467443415928p+1)^{1} \bigr] -
b=14, p=31, \bigl[ (840744548329489667263460350902150p+1)^{1} \bigr] -
b=14, p=37, \bigl[ ,(6p+1)^{1} ,(3821783428p+1)^{1} (168197518322504961042705040p+1)^{1} \bigr] -
b=14, p=41, \bigl[ (183874817115853273584973835186677469699745450p+1)^{1} \bigr] -
b=14, p=43, \bigl[ ,(4p+1)^{1} (198631271722408510085878443280029593561924242p+1)^{1} \bigr] -
b=14, p=47, \bigl[ ,(14p+1)^{1} ,(78524p+1)^{1} ,(450144p+1)^{1} ,(522810p+1)^{1} (955211530565735720426400174p+1)^{1} \bigr] -
b=15, p=2, \bigl[ \color{red}\bm{(1p+0)^{4}} \bigr] -
b=15, p=3, \bigl[ (80p+1)^{1} \bigr] -
b=15, p=5, \bigl[ ,(2p+1)^{1} (986p+1)^{1} \bigr] -
b=15, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (249066p+1)^{1} \bigr] -
b=15, p=11, \bigl[ ,(6p+1)^{1} ,(42p+1)^{1} ,(212p+1)^{1} (776p+1)^{1} \bigr] -
b=15, p=13, \bigl[ ,(4p+1)^{1} ,(12114p+1)^{1} (1281166p+1)^{1} \bigr] -
b=15, p=17, \bigl[ ,(61470744p+1)^{1} (396147624p+1)^{1} \bigr] -
b=15, p=19, \bigl[ ,(224848p+1)^{1} (19507856573824p+1)^{1} \bigr] -
b=15, p=23, \bigl[ ,(36p+1)^{1} ,(1380p+1)^{1} (132454876166589816p+1)^{1} \bigr] -
b=15, p=29, \bigl[ ,(2p+1)^{1} (533664688522123199099639207162p+1)^{1} \bigr] -
b=15, p=31, \bigl[ ,(10p+1)^{1} (21309777353366287581514739526730p+1)^{1} \bigr] -
b=15, p=37, \bigl[ ,(6p+1)^{1} ,(120p+1)^{1} ,(870730p+1)^{1} ,(66866769078p+1)^{1} (801242321368570p+1)^{1} \bigr] -
b=15, p=41, \bigl[ ,(205617859086p+1)^{1} (342755978945117678487281772983502p+1)^{1} \bigr] -
b=15, p=43, \bigl[ (619908581115822939869967045415613639394310225680p+1)^{1} \bigr] -
b=15, p=47, \bigl[ ,(6p+1)^{1} ,(14p+1)^{1} ,(50p+1)^{1} ,(134p+1)^{1} ,(3914p+1)^{1} (56512712660997277178892779441592006p+1)^{1} \bigr] -
b=16, p=2, \bigl[ (8p+1)^{1} \bigr] -
b=16, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (4p+1)^{1} \bigr] -
b=16, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(6p+1)^{1} (8p+1)^{1} \bigr] -
b=16, p=7, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(16p+1)^{1} (18p+1)^{1} \bigr] -
b=16, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(36p+1)^{1} ,(62p+1)^{1} (192p+1)^{1} \bigr] -
b=16, p=13, \bigl[ ,(4p+1)^{1} ,(12p+1)^{1} ,(124p+1)^{1} ,(210p+1)^{1} (630p+1)^{1} \bigr] -
b=16, p=17, \bigl[ ,(8p+1)^{1} ,(56p+1)^{1} ,(1548p+1)^{1} ,(2570p+1)^{1} (7710p+1)^{1} \bigr] -
b=16, p=19, \bigl[ ,(12p+1)^{1} ,(24p+1)^{1} ,(9198p+1)^{1} ,(27594p+1)^{1} (27648p+1)^{1} \bigr] -
b=16, p=23, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(44p+1)^{1} ,(72p+1)^{1} ,(1316p+1)^{1} ,(7760p+1)^{1} (121574p+1)^{1} \bigr] -
b=16, p=29, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(38p+1)^{1} ,(72p+1)^{1} ,(104592p+1)^{1} ,(3702332p+1)^{1} (18513920p+1)^{1} \bigr] -
b=16, p=31, \bigl[ ,(180p+1)^{1} ,(280p+1)^{1} ,(1596p+1)^{1} ,(12412p+1)^{1} ,(23091222p+1)^{1} (69273666p+1)^{1} \bigr] -
b=16, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(16p+1)^{1} ,(48p+1)^{1} ,(696786p+1)^{1} ,(4985976p+1)^{1} ,(6264048p+1)^{1} (16657248p+1)^{1} \bigr] -
b=16, p=41, \bigl[ ,(2p+1)^{1} ,(248p+1)^{1} ,(326p+1)^{1} ,(4428p+1)^{1} ,(295428p+1)^{1} ,(1054868p+1)^{1} ,(4012472p+1)^{1} (215400456p+1)^{1} \bigr] -
b=16, p=43, \bigl[ ,(4p+1)^{1} ,(10p+1)^{1} ,(226p+1)^{1} ,(2364p+1)^{1} ,(11632p+1)^{1} ,(48834p+1)^{1} ,(40912041060p+1)^{1} (68186767614p+1)^{1} \bigr] -
b=16, p=47, \bigl[ ,(6p+1)^{1} ,(50p+1)^{1} ,(80p+1)^{1} ,(96p+1)^{1} ,(282224p+1)^{1} ,(159235044p+1)^{1} ,(3526990160p+1)^{1} (2994414288896p+1)^{1} \bigr] -
b=17, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=17, p=3, \bigl[ (102p+1)^{1} \bigr] -
b=17, p=5, \bigl[ (17748p+1)^{1} \bigr] -
b=17, p=7, \bigl[ (3663738p+1)^{1} \bigr] -
b=17, p=11, \bigl[ (194726683566p+1)^{1} \bigr] -
b=17, p=13, \bigl[ ,(16312p+1)^{1} (224553604p+1)^{1} \bigr] -
b=17, p=17, \bigl[ ,(644p+1)^{1} ,(102896p+1)^{1} (158796396p+1)^{1} \bigr] -
b=17, p=19, \bigl[ ,(12p+1)^{1} ,(58p+1)^{1} ,(10663534p+1)^{1} (15367038p+1)^{1} \bigr] -
b=17, p=23, \bigl[ ,(2p+1)^{1} (1154461661705569137520760p+1)^{1} \bigr] -
b=17, p=29, \bigl[ ,(2p+1)^{1} ,(248p+1)^{1} ,(209934p+1)^{1} (402029403471929035512p+1)^{1} \bigr] -
b=17, p=31, \bigl[ ,(132p+1)^{1} ,(197532p+1)^{1} (11204537020193835546420162p+1)^{1} \bigr] -
b=17, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(27484313636744340p+1)^{1} (168077907600266909146p+1)^{1} \bigr] -
b=17, p=41, \bigl[ ,(2p+1)^{1} ,(21758p+1)^{1} ,(325992p+1)^{1} ,(23419929629772p+1)^{1} (450464171879256456p+1)^{1} \bigr] -
b=17, p=43, \bigl[ ,(36p+1)^{1} ,(71532040096596890224p+1)^{1} (24756810727222807165642690p+1)^{1} \bigr] -
b=17, p=47, \bigl[ (9013250974441131642914037329702512502710510444280169378p+1)^{1} \bigr] -
b=18, p=2, \bigl[ \color{magenta}\bm{(9p+1)^{1}} \bigr] -
b=18, p=3, \bigl[ (2p+1)^{3} \bigr] -
b=18, p=5, \bigl[ ,(8p+1)^{1} (542p+1)^{1} \bigr] -
b=18, p=7, \bigl[ ,(64p+1)^{1} (11458p+1)^{1} \bigr] -
b=18, p=11, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(1466p+1)^{1} (4656p+1)^{1} \bigr] -
b=18, p=13, \bigl[ ,(6p+1)^{1} ,(40p+1)^{1} (2289209176p+1)^{1} \bigr] -
b=18, p=17, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (444923989362649406p+1)^{1} \bigr] -
b=18, p=19, \bigl[ ,(360p+1)^{1} (320520258410674338p+1)^{1} \bigr] -
b=18, p=23, \bigl[ ,(2p+1)^{1} ,(26p+1)^{1} ,(324696p+1)^{1} (904401652054146p+1)^{1} \bigr] -
b=18, p=29, \bigl[ ,(51915450620958p+1)^{1} (3406913465907314424p+1)^{1} \bigr] -
b=18, p=31, \bigl[ ,(10p+1)^{1} ,(418p+1)^{1} ,(41187985066p+1)^{1} (302115441836262880p+1)^{1} \bigr] -
b=18, p=37, \bigl[ ,(4270p+1)^{1} (280414001885294752964595721794121337080p+1)^{1} \bigr] -
b=18, p=41, \bigl[ ,(92958p+1)^{1} ,(2788806p+1)^{1} (9630903349870633232340773738166486p+1)^{1} \bigr] -
b=18, p=43, \bigl[ ,(10p+1)^{1} ,(103836087284000652753784p+1)^{1} (673761672151378219550760p+1)^{1} \bigr] -
b=18, p=47, \bigl[ ,(440p+1)^{1} (6021288357544943085064491605149793229808791352459466p+1)^{1} \bigr] -
b=19, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} (2p+1)^{1} \bigr] -
b=19, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (42p+1)^{1} \bigr] -
b=19, p=5, \bigl[ ,(30p+1)^{1} (182p+1)^{1} \bigr] -
b=19, p=7, \bigl[ ,(100p+1)^{1} (10120p+1)^{1} \bigr] -
b=19, p=11, \bigl[ ,(9480p+1)^{1} (5641820p+1)^{1} \bigr] -
b=19, p=13, \bigl[ ,(46p+1)^{1} ,(2250p+1)^{1} (10256836p+1)^{1} \bigr] -
b=19, p=17, \bigl[ ,(179106p+1)^{1} (5882075448938p+1)^{1} \bigr] -
b=19, p=19, \bigl[ (5784852794328402307380p+1)^{1} \bigr] -
b=19, p=23, \bigl[ ,(12p+1)^{1} ,(102p+1)^{1} ,(717294044p+1)^{1} (58065017514p+1)^{1} \bigr] -
b=19, p=29, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(10241483498340p+1)^{1} (5691347776384478p+1)^{1} \bigr] -
b=19, p=31, \bigl[ (7847429641660768971083657470811348700p+1)^{1} \bigr] -
b=19, p=37, \bigl[ ,(4p+1)^{1} ,(96977691569850p+1)^{1} (578561021877730643548137934p+1)^{1} \bigr] -
b=19, p=41, \bigl[ ,(259866p+1)^{1} ,(285694052p+1)^{1} (291489464736570326880542313147270p+1)^{1} \bigr] -
b=19, p=43, \bigl[ ,(439945873212783462687384p+1)^{1} (661905784433527115671976652p+1)^{1} \bigr] -
b=19, p=47, \bigl[ (1492962439576714348948446916507553571122192695040806434620p+1)^{1} \bigr] -
b=20, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=20, p=3, \bigl[ (140p+1)^{1} \bigr] -
b=20, p=5, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} (50p+1)^{1} \bigr] -
b=20, p=7, \bigl[ ,(4p+1)^{1} ,(10p+1)^{1} (4674p+1)^{1} \bigr] -
b=20, p=11, \bigl[ (979904306220p+1)^{1} \bigr] -
b=20, p=13, \bigl[ ,(240p+1)^{1} ,(10966p+1)^{1} (745426p+1)^{1} \bigr] -
b=20, p=17, \bigl[ (40579566563467492260p+1)^{1} \bigr] -
b=20, p=19, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(3966762322p+1)^{1} (10141900240p+1)^{1} \bigr] -
b=20, p=23, \bigl[ ,(30p+1)^{1} ,(60p+1)^{1} (2011577352083542742550p+1)^{1} \bigr] -
b=20, p=29, \bigl[ ,(2p+1)^{1} ,(32p+1)^{1} ,(372p+1)^{1} ,(4952p+1)^{1} ,(16079562p+1)^{1} (2460455332472p+1)^{1} \bigr] -
b=20, p=31, \bigl[ ,(10p+1)^{1} ,(360p+1)^{1} ,(53100p+1)^{1} ,(10968963928p+1)^{1} (18765809044938p+1)^{1} \bigr] -
b=20, p=37, \bigl[ ,(1764p+1)^{1} ,(78106950p+1)^{1} (10364686060546107925082690755734p+1)^{1} \bigr] -
b=20, p=41, \bigl[ ,(18p+1)^{1} ,(19243556828524373918p+1)^{1} (484148647230439901779374200p+1)^{1} \bigr] -
b=20, p=43, \bigl[ ,(8584240p+1)^{1} (291673819653099866856597948225215830727328700p+1)^{1} \bigr] -
b=20, p=47, \bigl[ ,(24p+1)^{1} ,(104p+1)^{1} ,(16820251824p+1)^{1} ,(41083864740p+1)^{1} (1870444636489830943284557864p+1)^{1} \bigr]
-
b=21, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=21, p=3, \bigl[ (154p+1)^{1} \bigr] -
b=21, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (8168p+1)^{1} \bigr] -
b=21, p=7, \bigl[ ,(6p+1)^{1} ,(90p+1)^{1} (474p+1)^{1} \bigr] -
b=21, p=11, \bigl[ (1592170457010p+1)^{1} \bigr] -
b=21, p=13, \bigl[ ,(6p+1)^{1} ,(14572p+1)^{1} (39699550p+1)^{1} \bigr] -
b=21, p=17, \bigl[ (88358654397299093808p+1)^{1} \bigr] -
b=21, p=19, \bigl[ ,(634809948p+1)^{1} (2890584559158p+1)^{1} \bigr] -
b=21, p=23, \bigl[ ,(2p+1)^{1} ,(852p+1)^{1} (6081328961526229689032p+1)^{1} \bigr] -
b=21, p=29, \bigl[ ,(2p+1)^{1} ,(38058762p+1)^{1} ,(8509079328p+1)^{1} (23710805947988p+1)^{1} \bigr] -
b=21, p=31, \bigl[ ,(146474622p+1)^{1} ,(126994644852p+1)^{1} (8792963404891548p+1)^{1} \bigr] -
b=21, p=37, \bigl[ ,(840p+1)^{1} ,(45453046p+1)^{1} (216083937658202929529732929120354p+1)^{1} \bigr] -
b=21, p=41, \bigl[ ,(2p+1)^{1} ,(344460p+1)^{1} ,(2029730p+1)^{1} ,(420050862p+1)^{1} ,(22305640230p+1)^{1} (1290238613388p+1)^{1} \bigr] -
b=21, p=43, \bigl[ (833549167925186640102525304049878755654656600734807314p+1)^{1} \bigr] -
b=21, p=47, \bigl[ ,(1058p+1)^{1} ,(4830p+1)^{1} ,(1596650p+1)^{1} ,(3373314p+1)^{1} ,(112741986p+1)^{1} (208398256132949975172216p+1)^{1} \bigr] -
b=22, p=2, \bigl[ \color{magenta}\bm{(11p+1)^{1}} \bigr] -
b=22, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (4p+1)^{2} \bigr] -
b=22, p=5, \bigl[ (49082p+1)^{1} \bigr] -
b=22, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2424060p+1)^{1} \bigr] -
b=22, p=11, \bigl[ ,(6p+1)^{1} ,(32p+1)^{1} (106951776p+1)^{1} \bigr] -
b=22, p=13, \bigl[ ,(6p+1)^{1} ,(154p+1)^{1} (6546725974p+1)^{1} \bigr] -
b=22, p=17, \bigl[ ,(14p+1)^{1} ,(4395854p+1)^{1} (10390280450p+1)^{1} \bigr] -
b=22, p=19, \bigl[ ,(2418p+1)^{1} ,(17958p+1)^{1} (5126557684338p+1)^{1} \bigr] -
b=22, p=23, \bigl[ ,(194p+1)^{1} ,(57524522550p+1)^{1} (2633702903706p+1)^{1} \bigr] -
b=22, p=29, \bigl[ ,(2p+1)^{1} ,(3068538p+1)^{1} ,(4158380p+1)^{1} (2208700126495365878p+1)^{1} \bigr] -
b=22, p=31, \bigl[ ,(115876110p+1)^{1} (176265174634636365824578310736p+1)^{1} \bigr] -
b=22, p=37, \bigl[ ,(8398p+1)^{1} ,(50999706480240p+1)^{1} (102581673291225437954529316p+1)^{1} \bigr] -
b=22, p=41, \bigl[ ,(31668510p+1)^{1} ,(2241518445102p+1)^{1} (106558746041916111943269206786p+1)^{1} \bigr] -
b=22, p=43, \bigl[ ,(4p+1)^{1} ,(22p+1)^{1} ,(6041842p+1)^{1} (137864871952787324919893591638090114353190p+1)^{1} \bigr] -
b=22, p=47, \bigl[ ,(524334p+1)^{1} ,(863778p+1)^{1} ,(229880280112040p+1)^{1} (116343832943805381253366911354p+1)^{1} \bigr] -
b=23, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{3}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=23, p=3, \bigl[ ,(2p+1)^{1} (26p+1)^{1} \bigr] -
b=23, p=5, \bigl[ (58512p+1)^{1} \bigr] -
b=23, p=7, \bigl[ ,(4p+1)^{1} (762388p+1)^{1} \bigr] -
b=23, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (357930036782p+1)^{1} \bigr] -
b=23, p=13, \bigl[ ,(3668586p+1)^{1} (36953346p+1)^{1} \bigr] -
b=23, p=17, \bigl[ ,(6p+1)^{1} (3661545079711930038p+1)^{1} \bigr] -
b=23, p=19, \bigl[ ,(112p+1)^{1} ,(3361972p+1)^{1} (1312590453348p+1)^{1} \bigr] -
b=23, p=23, \bigl[ ,(20p+1)^{1} ,(56p+1)^{1} ,(36156653556p+1)^{1} (83506408344p+1)^{1} \bigr] -
b=23, p=29, \bigl[ ,(8p+1)^{1} ,(60p+1)^{1} ,(2934p+1)^{1} ,(393452p+1)^{1} (12302089120147162182p+1)^{1} \bigr] -
b=23, p=31, \bigl[ ,(1318999678342p+1)^{1} (58637056125461925661703110p+1)^{1} \bigr] -
b=23, p=37, \bigl[ ,(52044819940p+1)^{1} (154428087625359665618636173637782780p+1)^{1} \bigr] -
b=23, p=41, \bigl[ ,(2p+1)^{1} ,(2854121706p+1)^{1} (7732150553626619578222085879678992328000p+1)^{1} \bigr] -
b=23, p=43, \bigl[ ,(4p+1)^{1} ,(2142p+1)^{1} (2377207391869483999786619463499426519942310158354p+1)^{1} \bigr] -
b=23, p=47, \bigl[ ,(34314p+1)^{1} ,(3420899550958760433514194p+1)^{1} (37400731804750471711868941056p+1)^{1} \bigr] -
b=24, p=2, \bigl[ (2p+1)^{2} \bigr] -
b=24, p=3, \bigl[ (200p+1)^{1} \bigr] -
b=24, p=5, \bigl[ (69240p+1)^{1} \bigr] -
b=24, p=7, \bigl[ ,(4p+1)^{1} ,(34p+1)^{1} (4110p+1)^{1} \bigr] -
b=24, p=11, \bigl[ ,(6p+1)^{1} ,(668p+1)^{1} (12215186p+1)^{1} \bigr] -
b=24, p=13, \bigl[ ,(4p+1)^{1} ,(504p+1)^{1} ,(1224p+1)^{1} (530404p+1)^{1} \bigr] -
b=24, p=17, \bigl[ ,(18p+1)^{1} ,(7092590p+1)^{1} (20091954956p+1)^{1} \bigr] -
b=24, p=19, \bigl[ (383294118787242913206600p+1)^{1} \bigr] -
b=24, p=23, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(5426p+1)^{1} ,(13250p+1)^{1} (2555176758861936p+1)^{1} \bigr] -
b=24, p=29, \bigl[ ,(68p+1)^{1} ,(350p+1)^{1} ,(38970p+1)^{1} (703453629457372200890544p+1)^{1} \bigr] -
b=24, p=31, \bigl[ ,(10p+1)^{1} ,(52p+1)^{1} ,(318p+1)^{1} ,(1138p+1)^{1} ,(1278p+1)^{1} ,(130508862p+1)^{1} (306767867650p+1)^{1} \bigr] -
b=24, p=37, \bigl[ ,(100p+1)^{1} ,(1320134470p+1)^{1} (7598841799511964908388171197048130p+1)^{1} \bigr] -
b=24, p=41, \bigl[ ,(68p+1)^{1} ,(986891082p+1)^{1} ,(123887549761896p+1)^{1} (717523454028035991361718p+1)^{1} \bigr] -
b=24, p=43, \bigl[ ,(10p+1)^{1} ,(1374p+1)^{1} ,(525792p+1)^{1} (392342038419374618566043976108571809671980p+1)^{1} \bigr] -
b=24, p=47, \bigl[ ,(314p+1)^{1} ,(10580p+1)^{1} (9342461885647817213787994804104501584339459046438534p+1)^{1} \bigr] -
b=25, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (6p+1)^{1} \bigr] -
b=25, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (10p+1)^{1} \bigr] -
b=25, p=5, \bigl[ ,(2p+1)^{1} ,(14p+1)^{1} (104p+1)^{1} \bigr] -
b=25, p=7, \bigl[ ,(4p+1)^{1} ,(64p+1)^{1} (2790p+1)^{1} \bigr] -
b=25, p=11, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(480p+1)^{1} (1109730p+1)^{1} \bigr] -
b=25, p=13, \bigl[ ,(402p+1)^{1} ,(2994p+1)^{1} (23475060p+1)^{1} \bigr] -
b=25, p=17, \bigl[ ,(24p+1)^{1} ,(180p+1)^{1} ,(2443580p+1)^{1} (27432024p+1)^{1} \bigr] -
b=25, p=19, \bigl[ ,(10p+1)^{1} ,(40p+1)^{1} ,(330p+1)^{1} ,(1032p+1)^{1} ,(11212p+1)^{1} (209530p+1)^{1} \bigr] -
b=25, p=23, \bigl[ ,(2p+1)^{1} ,(390p+1)^{1} ,(14443798320p+1)^{1} (1837947726654p+1)^{1} \bigr] -
b=25, p=29, \bigl[ ,(2p+1)^{1} ,(1230p+1)^{1} ,(175754p+1)^{1} ,(210028183578p+1)^{1} (762965394632p+1)^{1} \bigr] -
b=25, p=31, \bigl[ ,(42p+1)^{1} ,(60p+1)^{1} ,(684100p+1)^{1} ,(906006826p+1)^{1} (20179113176567370p+1)^{1} \bigr] -
b=25, p=37, \bigl[ ,(4p+1)^{1} ,(246p+1)^{1} ,(784060p+1)^{1} ,(377620810p+1)^{1} ,(236148142074p+1)^{1} (1241085226618p+1)^{1} \bigr] -
b=25, p=41, \bigl[ ,(2p+1)^{1} ,(1062p+1)^{1} ,(5400p+1)^{1} ,(54591128p+1)^{1} ,(231025039235988p+1)^{1} (123885479102846048p+1)^{1} \bigr] -
b=25, p=43, \bigl[ ,(36p+1)^{1} ,(222p+1)^{1} ,(38244480p+1)^{1} ,(182944374p+1)^{1} ,(37877789496p+1)^{1} (4019245399972462530p+1)^{1} \bigr] -
b=25, p=47, \bigl[ ,(44p+1)^{1} ,(338058644p+1)^{1} ,(76646212998069380p+1)^{1} (3779482637021809499314490784990p+1)^{1} \bigr] -
b=26, p=2, \bigl[ \color{magenta}\bm{(1p+1)^{3}} \bigr] -
b=26, p=3, \bigl[ ,(6p+1)^{1} (12p+1)^{1} \bigr] -
b=26, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (1728p+1)^{1} \bigr] -
b=26, p=7, \bigl[ (45896058p+1)^{1} \bigr] -
b=26, p=11, \bigl[ ,(2p+1)^{1} ,(5958p+1)^{1} (8854142p+1)^{1} \bigr] -
b=26, p=13, \bigl[ ,(2135752p+1)^{1} (274964086p+1)^{1} \bigr] -
b=26, p=17, \bigl[ ,(66p+1)^{1} (2375626872107591484p+1)^{1} \bigr] -
b=26, p=19, \bigl[ ,(1758p+1)^{1} (48307496187727348188p+1)^{1} \bigr] -
b=26, p=23, \bigl[ ,(596p+1)^{1} ,(47226p+1)^{1} ,(66456864p+1)^{1} (26763093020p+1)^{1} \bigr] -
b=26, p=29, \bigl[ ,(2p+1)^{1} (2529513915645143118516945582534704420p+1)^{1} \bigr] -
b=26, p=31, \bigl[ ,(21792713068475842p+1)^{1} (139700863317388509431896p+1)^{1} \bigr] -
b=26, p=37, \bigl[ ,(34p+1)^{1} ,(1662280p+1)^{1} ,(25248549692668p+1)^{1} (337677668437956045172624p+1)^{1} \bigr] -
b=26, p=41, \bigl[ ,(2p+1)^{1} ,(64242p+1)^{1} (46078913936664394390832903021906039587529824478p+1)^{1} \bigr] -
b=26, p=43, \bigl[ (6493001429596504409672809053274055565050415613881496676994p+1)^{1} \bigr] -
b=26, p=47, \bigl[ ,(255029587211664258p+1)^{1} (226475413950631558338306629782655747882780280p+1)^{1} \bigr] -
b=27, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=27, p=3, \bigl[ (252p+1)^{1} \bigr] -
b=27, p=5, \bigl[ ,(2p+1)^{2} (912p+1)^{1} \bigr] -
b=27, p=7, \bigl[ ,(156p+1)^{1} (52584p+1)^{1} \bigr] -
b=27, p=11, \bigl[ ,(2p+1)^{1} ,(350p+1)^{1} (219449208p+1)^{1} \bigr] -
b=27, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(24p+1)^{1} ,(504p+1)^{1} ,(564p+1)^{1} (61320p+1)^{1} \bigr] -
b=27, p=17, \bigl[ ,(110p+1)^{1} ,(756p+1)^{1} ,(2030p+1)^{1} (5871186588p+1)^{1} \bigr] -
b=27, p=19, \bigl[ ,(12p+1)^{1} ,(84p+1)^{1} ,(13092p+1)^{1} ,(19152p+1)^{1} (96009432p+1)^{1} \bigr] -
b=27, p=23, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(43544486p+1)^{1} (107010590291907372p+1)^{1} \bigr] -
b=27, p=29, \bigl[ ,(2p+1)^{1} ,(984p+1)^{1} ,(2580p+1)^{1} ,(702794p+1)^{1} ,(1111548p+1)^{1} (5180142206064p+1)^{1} \bigr] -
b=27, p=31, \bigl[ ,(22p+1)^{1} ,(36p+1)^{1} ,(3312p+1)^{1} ,(142066p+1)^{1} (847538769161784488542836p+1)^{1} \bigr] -
b=27, p=37, \bigl[ ,(353998p+1)^{1} ,(505464p+1)^{1} ,(3237276p+1)^{1} ,(464571046p+1)^{1} (188171713872161196p+1)^{1} \bigr] -
b=27, p=41, \bigl[ ,(2p+1)^{1} ,(1248p+1)^{1} ,(61632p+1)^{1} ,(2120748698p+1)^{1} (48776288232131391330769970995008p+1)^{1} \bigr] -
b=27, p=43, \bigl[ ,(10p+1)^{1} ,(96p+1)^{1} ,(51141216p+1)^{1} ,(8856012717707254p+1)^{1} (21229106178205979323121976p+1)^{1} \bigr] -
b=27, p=47, \bigl[ ,(26p+1)^{1} ,(468p+1)^{1} ,(108780p+1)^{1} ,(2056526p+1)^{1} ,(3446161608p+1)^{1} ,(43216193316p+1)^{1} (3517052637072320844p+1)^{1} \bigr] -
b=28, p=2, \bigl[ (14p+1)^{1} \bigr] -
b=28, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (90p+1)^{1} \bigr] -
b=28, p=5, \bigl[ (127484p+1)^{1} \bigr] -
b=28, p=7, \bigl[ ,(16p+1)^{1} (631780p+1)^{1} \bigr] -
b=28, p=11, \bigl[ ,(552458p+1)^{1} (4595046p+1)^{1} \bigr] -
b=28, p=13, \bigl[ ,(4p+1)^{1} (349519508815672p+1)^{1} \bigr] -
b=28, p=17, \bigl[ (8707106314829844247340p+1)^{1} \bigr] -
b=28, p=19, \bigl[ ,(1109694p+1)^{1} (289686576270473682p+1)^{1} \bigr] -
b=28, p=23, \bigl[ ,(2p+1)^{1} (65985006339715492131912122286p+1)^{1} \bigr] -
b=28, p=29, \bigl[ ,(2p+1)^{1} (20089500339223207051367759618464596462p+1)^{1} \bigr] -
b=28, p=31, \bigl[ ,(348p+1)^{1} ,(54058p+1)^{1} ,(461536p+1)^{1} (3360493715578764100906338p+1)^{1} \bigr] -
b=28, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(40p+1)^{1} ,(544p+1)^{1} ,(976469424p+1)^{1} (9807377870748753776147591206p+1)^{1} \bigr] -
b=28, p=41, \bigl[ ,(2p+1)^{1} ,(20p+1)^{1} ,(19548p+1)^{1} ,(792986p+1)^{1} (109641330133707621243232153884979319868p+1)^{1} \bigr] -
b=28, p=43, \bigl[ ,(84p+1)^{1} ,(1396p+1)^{1} ,(15912p+1)^{1} ,(2463769170p+1)^{1} ,(542358266634p+1)^{1} (396932816373169568236p+1)^{1} \bigr] -
b=28, p=47, \bigl[ ,(134p+1)^{1} ,(513380p+1)^{1} ,(452705881484p+1)^{1} ,(72875866227083786p+1)^{1} (7388594603711568907520p+1)^{1} \bigr] -
b=29, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,\color{magenta}\bm{(1p+1)^{1}} (2p+1)^{1} \bigr] -
b=29, p=3, \bigl[ ,(4p+1)^{1} (22p+1)^{1} \bigr] -
b=29, p=5, \bigl[ (146508p+1)^{1} \bigr] -
b=29, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (12572796p+1)^{1} \bigr] -
b=29, p=11, \bigl[ ,(2p+1)^{1} (1722262812776p+1)^{1} \bigr] -
b=29, p=13, \bigl[ ,(40p+1)^{1} ,(11394p+1)^{1} (365268622p+1)^{1} \bigr] -
b=29, p=17, \bigl[ ,(230p+1)^{1} ,(116348p+1)^{1} (1970893387506p+1)^{1} \bigr] -
b=29, p=19, \bigl[ ,(72982p+1)^{1} (8273335821061253332p+1)^{1} \bigr] -
b=29, p=23, \bigl[ ,(5709902664p+1)^{1} (51040103143488493062p+1)^{1} \bigr] -
b=29, p=29, \bigl[ ,(2p+1)^{1} ,(578p+1)^{1} ,(2912p+1)^{1} ,(83744p+1)^{1} ,(486602p+1)^{1} ,(2011068p+1)^{1} (18942578p+1)^{1} \bigr] -
b=29, p=31, \bigl[ ,(1186p+1)^{1} ,(493374930264478p+1)^{1} (4424062387939988574906p+1)^{1} \bigr] -
b=29, p=37, \bigl[ ,(4p+1)^{1} ,(376p+1)^{1} ,(664962138p+1)^{1} (24308629329392585340539408578622994p+1)^{1} \bigr] -
b=29, p=41, \bigl[ ,(2p+1)^{1} ,(68p+1)^{1} ,(10902p+1)^{1} ,(6068476030170432p+1)^{1} (30739366680917316267465864096p+1)^{1} \bigr] -
b=29, p=43, \bigl[ ,(4p+1)^{1} ,(324p+1)^{1} ,(4968222p+1)^{1} (1232330596272194297913941271797695062715646332p+1)^{1} \bigr] -
b=29, p=47, \bigl[ ,(6p+1)^{1} ,(14036p+1)^{1} ,(94488p+1)^{1} ,(166466p+1)^{1} ,(344686453046p+1)^{1} ,(2134871332470p+1)^{1} (38943232242957446p+1)^{1} \bigr] -
b=30, p=2, \bigl[ \color{magenta}\bm{(15p+1)^{1}} \bigr] -
b=30, p=3, \bigl[ ,(2p+1)^{2} (6p+1)^{1} \bigr] -
b=30, p=5, \bigl[ (167586p+1)^{1} \bigr] -
b=30, p=7, \bigl[ ,(10p+1)^{1} ,(16p+1)^{1} (13428p+1)^{1} \bigr] -
b=30, p=11, \bigl[ (55531974921630p+1)^{1} \bigr] -
b=30, p=13, \bigl[ ,(70p+1)^{1} ,(1026p+1)^{1} ,(13762p+1)^{1} (19452p+1)^{1} \bigr] -
b=30, p=17, \bigl[ ,(6p+1)^{1} ,(24p+1)^{1} (621804525107625156p+1)^{1} \bigr] -
b=30, p=19, \bigl[ ,(10p+1)^{1} (110438086582225558480060p+1)^{1} \bigr] -
b=30, p=23, \bigl[ ,(12p+1)^{1} ,(20p+1)^{1} ,(6475092p+1)^{1} ,(75373200p+1)^{1} (428118266p+1)^{1} \bigr] -
b=30, p=29, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(332p+1)^{1} (29224104116714698529176343274429210p+1)^{1} \bigr] -
b=30, p=31, \bigl[ ,(12p+1)^{1} ,(35013662530p+1)^{1} (16970363205567234639344808256p+1)^{1} \bigr] -
b=30, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} (126297737655721199741808241543085350001827357696p+1)^{1} \bigr] -
b=30, p=41, \bigl[ ,(2p+1)^{1} ,(71862p+1)^{1} ,(73473930p+1)^{1} (4164003303859382830832088215239985860508p+1)^{1} \bigr] -
b=30, p=43, \bigl[ ,(22p+1)^{1} ,(30p+1)^{1} ,(248952784p+1)^{1} ,(14838630262p+1)^{1} ,(2013967988790p+1)^{1} (3640009752697695574p+1)^{1} \bigr] -
b=30, p=47, \bigl[ ,(24p+1)^{1} ,(50p+1)^{1} ,(4646p+1)^{1} ,(21170p+1)^{1} (3382659940230252196006729498962625642462548708056p+1)^{1} \bigr]
-
b=31, p=2, \bigl[ \color{red}\bm{(1p+0)^{5}} \bigr] -
b=31, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (110p+1)^{1} \bigr] -
b=31, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (3470p+1)^{1} \bigr] -
b=31, p=7, \bigl[ (131012448p+1)^{1} \bigr] -
b=31, p=11, \bigl[ ,(2p+1)^{1} ,(36p+1)^{1} ,(56p+1)^{1} (13666622p+1)^{1} \bigr] -
b=31, p=13, \bigl[ ,(3262p+1)^{1} ,(186676p+1)^{1} (608370p+1)^{1} \bigr] -
b=31, p=17, \bigl[ (44215915243456359173888p+1)^{1} \bigr] -
b=31, p=19, \bigl[ ,(30p+1)^{1} ,(750p+1)^{1} (4672140333295303272p+1)^{1} \bigr] -
b=31, p=23, \bigl[ ,(65652p+1)^{1} ,(2676632p+1)^{1} (312016293970597092p+1)^{1} \bigr] -
b=31, p=29, \bigl[ ,(12p+1)^{1} ,(372p+1)^{1} ,(1718p+1)^{1} ,(51123110p+1)^{1} ,(387675128p+1)^{1} (6529082760p+1)^{1} \bigr] -
b=31, p=31, \bigl[ (18353950678197027912484562396837972855962080p+1)^{1} \bigr] -
b=31, p=37, \bigl[ ,(4p+1)^{1} ,(114p+1)^{1} ,(4124265748p+1)^{1} ,(6967661010p+1)^{1} ,(10449370488p+1)^{1} (1427364676296p+1)^{1} \bigr] -
b=31, p=41, \bigl[ ,(2p+1)^{1} ,(1036141394010565283238p+1)^{1} (3225844008645692105918617723816572p+1)^{1} \bigr] -
b=31, p=43, \bigl[ ,(3418202352p+1)^{1} (70908271732710713102566303418571725135834785195056p+1)^{1} \bigr] -
b=31, p=47, \bigl[ ,(66565386010544p+1)^{1} ,(3637084776656297227586p+1)^{1} (16465802530824261473310577490p+1)^{1} \bigr] -
b=32, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=32, p=3, \bigl[ ,(2p+1)^{1} (50p+1)^{1} \bigr] -
b=32, p=5, \bigl[ ,(120p+1)^{1} (360p+1)^{1} \bigr] -
b=32, p=7, \bigl[ ,(10p+1)^{1} ,(18p+1)^{1} (17560p+1)^{1} \bigr] -
b=32, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(80p+1)^{1} ,(290p+1)^{1} (18360p+1)^{1} \bigr] -
b=32, p=13, \bigl[ ,(630p+1)^{1} (11176549504470p+1)^{1} \bigr] -
b=32, p=17, \bigl[ ,(7710p+1)^{1} (560057223901985790p+1)^{1} \bigr] -
b=32, p=19, \bigl[ ,(10p+1)^{1} ,(27594p+1)^{1} ,(22146250p+1)^{1} (1596165930p+1)^{1} \bigr] -
b=32, p=23, \bigl[ ,(2p+1)^{1} ,(650p+1)^{1} ,(7760p+1)^{1} ,(175520p+1)^{1} (115065552651480p+1)^{1} \bigr] -
b=32, p=29, \bigl[ ,(8p+1)^{1} ,(38p+1)^{1} ,(72p+1)^{1} (92410177854615959127242327384310p+1)^{1} \bigr] -
b=32, p=31, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(10p+1)^{1} ,(370p+1)^{1} ,(2370p+1)^{1} ,(69273666p+1)^{1} ,(149997400p+1)^{1} (585748703650p+1)^{1} \bigr] -
b=32, p=37, \bigl[ ,(6p+1)^{1} ,(16657248p+1)^{1} ,(42915018864670p+1)^{1} (195913745926642162193317720p+1)^{1} \bigr] -
b=32, p=41, \bigl[ ,(326p+1)^{1} ,(71720p+1)^{1} ,(4012472p+1)^{1} ,(1711496150p+1)^{1} (89164025988019443455465340480p+1)^{1} \bigr] -
b=32, p=43, \bigl[ ,(10p+1)^{1} ,(40p+1)^{1} ,(226p+1)^{1} ,(48834p+1)^{1} ,(17012010p+1)^{1} ,(11973299970p+1)^{1} (6928541621954599173136330p+1)^{1} \bigr] -
b=32, p=47, \bigl[ ,(50p+1)^{1} ,(96p+1)^{1} ,(282224p+1)^{1} ,(50879040p+1)^{1} ,(1538218880p+1)^{1} (1557495753088468209478160364829250p+1)^{1} \bigr] -
b=33, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (8p+1)^{1} \bigr] -
b=33, p=3, \bigl[ (374p+1)^{1} \bigr] -
b=33, p=5, \bigl[ ,(6p+1)^{1} (7890p+1)^{1} \bigr] -
b=33, p=7, \bigl[ ,(60p+1)^{1} (451926p+1)^{1} \bigr] -
b=33, p=11, \bigl[ ,(192p+1)^{1} (67953397950p+1)^{1} \bigr] -
b=33, p=13, \bigl[ ,(429754p+1)^{1} (23682335542p+1)^{1} \bigr] -
b=33, p=17, \bigl[ ,(4866p+1)^{1} ,(6668p+1)^{1} ,(11250p+1)^{1} (66905180p+1)^{1} \bigr] -
b=33, p=19, \bigl[ ,(3999955410p+1)^{1} (1538340689685228p+1)^{1} \bigr] -
b=33, p=23, \bigl[ ,(20p+1)^{1} ,(170p+1)^{1} (63526373182973380660535244p+1)^{1} \bigr] -
b=33, p=29, \bigl[ ,(122p+1)^{1} ,(7101398p+1)^{1} (160965893298692291275866484848p+1)^{1} \bigr] -
b=33, p=31, \bigl[ ,(2608p+1)^{1} ,(17383792620p+1)^{1} (2743087020532567371268091566p+1)^{1} \bigr] -
b=33, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(18340p+1)^{1} (5735499499875580396735149501302512279558986p+1)^{1} \bigr] -
b=33, p=41, \bigl[ ,(2p+1)^{1} ,(62p+1)^{1} (655712174781490170201408510976779913462819629391726908p+1)^{1} \bigr] -
b=33, p=43, \bigl[ ,(150p+1)^{1} (22276858124694180158241666377691324352658792382730362262104p+1)^{1} \bigr] -
b=33, p=47, \bigl[ ,(1476870p+1)^{1} ,(5563266p+1)^{1} ,(23424300722488019868p+1)^{1} (7803241124662766994047354477466p+1)^{1} \bigr] -
b=34, p=2, \bigl[ ,(2p+1)^{1} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=34, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (132p+1)^{1} \bigr] -
b=34, p=5, \bigl[ ,(12p+1)^{1} (4514p+1)^{1} \bigr] -
b=34, p=7, \bigl[ ,(66p+1)^{1} (491088p+1)^{1} \bigr] -
b=34, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4122p+1)^{1} (387666726p+1)^{1} \bigr] -
b=34, p=13, \bigl[ (189133573998987030p+1)^{1} \bigr] -
b=34, p=17, \bigl[ ,(6p+1)^{1} ,(8p+1)^{1} (13696857473167092480p+1)^{1} \bigr] -
b=34, p=19, \bigl[ ,(30304p+1)^{1} (347198284300809191818p+1)^{1} \bigr] -
b=34, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(2844p+1)^{1} (516412315066933403332986p+1)^{1} \bigr] -
b=34, p=29, \bigl[ ,(735624p+1)^{1} ,(651131252930p+1)^{1} (671206586301110255988p+1)^{1} \bigr] -
b=34, p=31, \bigl[ ,(344356p+1)^{1} (27390591164027377718913026697364496662p+1)^{1} \bigr] -
b=34, p=37, \bigl[ ,(6p+1)^{1} ,(138p+1)^{1} ,(1050p+1)^{1} ,(31276p+1)^{1} ,(5313282538288p+1)^{1} (37597018456415258916060p+1)^{1} \bigr] -
b=34, p=41, \bigl[ ,(1398866p+1)^{1} (7957521546735918477242950607755754781448083616261812p+1)^{1} \bigr] -
b=34, p=43, \bigl[ ,(10882p+1)^{1} ,(60016p+1)^{1} ,(61814932p+1)^{1} ,(2002393242p+1)^{1} (1820193601552294415277998959654p+1)^{1} \bigr] -
b=34, p=47, \bigl[ ,(20p+1)^{1} (653593432677838541099283438319733850234685109297716941550308468390p+1)^{1} \bigr] -
b=35, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(1p+1)^{2}} \bigr] -
b=35, p=3, \bigl[ ,(4p+1)^{1} (32p+1)^{1} \bigr] -
b=35, p=5, \bigl[ ,(6p+1)^{1} (9966p+1)^{1} \bigr] -
b=35, p=7, \bigl[ ,(6p+1)^{1} (6286818p+1)^{1} \bigr] -
b=35, p=11, \bigl[ ,(2p+1)^{1} ,(5082p+1)^{1} (200776988p+1)^{1} \bigr] -
b=35, p=13, \bigl[ ,(34p+1)^{1} (604030100109202p+1)^{1} \bigr] -
b=35, p=17, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(104706p+1)^{1} (10147504670791130p+1)^{1} \bigr] -
b=35, p=19, \bigl[ ,(6897808p+1)^{1} (2568003544002619444p+1)^{1} \bigr] -
b=35, p=23, \bigl[ ,(2233843824p+1)^{1} ,(3617944464p+1)^{1} (97586084316p+1)^{1} \bigr] -
b=35, p=29, \bigl[ ,(2p+1)^{1} ,(1576082p+1)^{1} ,(316925033504p+1)^{1} (24542172270603723488p+1)^{1} \bigr] -
b=35, p=31, \bigl[ ,(1530p+1)^{1} ,(322681266201823002p+1)^{1} (1469166566393328446556p+1)^{1} \bigr] -
b=35, p=37, \bigl[ ,(10492706444716p+1)^{1} ,(42672591219448p+1)^{1} (1751447055380668864512900p+1)^{1} \bigr] -
b=35, p=41, \bigl[ ,(20p+1)^{1} ,(300p+1)^{1} ,(23048p+1)^{1} ,(398786679298200900p+1)^{1} (9317543040653798555714269668p+1)^{1} \bigr] -
b=35, p=43, \bigl[ ,(22430082p+1)^{1} ,(146998742502p+1)^{1} (278546138345544307527712020741934440769416p+1)^{1} \bigr] -
b=35, p=47, \bigl[ ,(266p+1)^{1} ,(366p+1)^{1} (10839341244273955820943040454371958831284927292883565845823424p+1)^{1} \bigr] -
b=36, p=2, \bigl[ (18p+1)^{1} \bigr] -
b=36, p=3, \bigl[ ,(10p+1)^{1} (14p+1)^{1} \bigr] -
b=36, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} ,(20p+1)^{1} (62p+1)^{1} \bigr] -
b=36, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(4p+1)^{1} ,(28p+1)^{1} (7998p+1)^{1} \bigr] -
b=36, p=11, \bigl[ ,(2p+1)^{1} ,(286796p+1)^{1} (4711650p+1)^{1} \bigr] -
b=36, p=13, \bigl[ ,(4p+1)^{1} ,(72p+1)^{1} ,(264p+1)^{1} ,(2890p+1)^{1} (58530p+1)^{1} \bigr] -
b=36, p=17, \bigl[ ,(14p+1)^{1} ,(24p+1)^{1} ,(66p+1)^{1} ,(1814p+1)^{1} ,(11208p+1)^{1} (746526p+1)^{1} \bigr] -
b=36, p=19, \bigl[ ,(10p+1)^{1} ,(94p+1)^{1} ,(2563879228p+1)^{1} (33582790852p+1)^{1} \bigr] -
b=36, p=23, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} ,(140p+1)^{1} ,(4954700p+1)^{1} ,(43043510p+1)^{1} (326345430p+1)^{1} \bigr] -
b=36, p=29, \bigl[ ,(2p+1)^{1} ,(1128p+1)^{1} ,(94041129772028p+1)^{1} (254107953701992365402p+1)^{1} \bigr] -
b=36, p=31, \bigl[ ,(172p+1)^{1} ,(1604669063983112026p+1)^{1} (6112642941587097453450p+1)^{1} \bigr] -
b=36, p=37, \bigl[ ,(4p+1)^{1} ,(106p+1)^{1} ,(214p+1)^{1} ,(330p+1)^{1} ,(69454p+1)^{1} ,(9034779076p+1)^{1} ,(29642236066p+1)^{1} (55534837614p+1)^{1} \bigr] -
b=36, p=41, \bigl[ ,(2p+1)^{1} ,(696p+1)^{1} ,(210930p+1)^{1} ,(45240265509426766516560p+1)^{1} (117986674726269375000980p+1)^{1} \bigr] -
b=36, p=43, \bigl[ ,(4p+1)^{1} ,(10p+1)^{1} ,(171706p+1)^{1} ,(24394276816975853386p+1)^{1} (9592620665748327437386015717410p+1)^{1} \bigr] -
b=36, p=47, \bigl[ ,(19806624p+1)^{1} ,(959805024p+1)^{1} ,(379185492759918p+1)^{1} (11373990733208995562354210295740970p+1)^{1} \bigr] -
b=37, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(9p+1)^{1}} \bigr] -
b=37, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (22p+1)^{1} \bigr] -
b=37, p=5, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} (854p+1)^{1} \bigr] -
b=37, p=7, \bigl[ ,(10p+1)^{1} (5305828p+1)^{1} \bigr] -
b=37, p=11, \bigl[ ,(242p+1)^{1} (168714578928p+1)^{1} \bigr] -
b=37, p=13, \bigl[ (520447060290772020p+1)^{1} \bigr] -
b=37, p=17, \bigl[ ,(36p+1)^{1} ,(6421910p+1)^{1} (11145621031338p+1)^{1} \bigr] -
b=37, p=19, \bigl[ ,(232270p+1)^{1} (207028357345956358564p+1)^{1} \bigr] -
b=37, p=23, \bigl[ ,(2p+1)^{1} ,(80218692623300p+1)^{1} (16312031186341160p+1)^{1} \bigr] -
b=37, p=29, \bigl[ ,(8p+1)^{1} ,(1332p+1)^{1} ,(12012588p+1)^{1} ,(48764732p+1)^{1} (649144962702212912p+1)^{1} \bigr] -
b=37, p=31, \bigl[ ,(12448219888363578p+1)^{1} (9552571707276461630169909132p+1)^{1} \bigr] -
b=37, p=37, \bigl[ ,(4p+1)^{1} ,(54p+1)^{1} ,(216p+1)^{1} ,(450p+1)^{1} ,(468p+1)^{1} ,(275478801534p+1)^{1} (1132525014960671351301574p+1)^{1} \bigr] -
b=37, p=41, \bigl[ ,(2p+1)^{1} ,(18p+1)^{1} ,(72p+1)^{1} ,(685948772p+1)^{1} (2631011896617552829918750974252733139169956p+1)^{1} \bigr] -
b=37, p=43, \bigl[ ,(2315730084p+1)^{1} ,(18563866636674p+1)^{1} ,(2241649260640652392p+1)^{1} (2283356760270989476p+1)^{1} \bigr] -
b=37, p=47, \bigl[ ,(254p+1)^{1} ,(3616964906p+1)^{1} ,(85211785844516p+1)^{1} (3690396605767344283683782583190758381678p+1)^{1} \bigr] -
b=38, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} (6p+1)^{1} \bigr] -
b=38, p=3, \bigl[ (494p+1)^{1} \bigr] -
b=38, p=5, \bigl[ ,(2p+1)^{1} (38936p+1)^{1} \bigr] -
b=38, p=7, \bigl[ (441759006p+1)^{1} \bigr] -
b=38, p=11, \bigl[ ,(20366p+1)^{1} (2616524408p+1)^{1} \bigr] -
b=38, p=13, \bigl[ ,(6p+1)^{1} ,(34p+1)^{1} (20464958209534p+1)^{1} \bigr] -
b=38, p=17, \bigl[ ,(8p+1)^{1} ,(251130p+1)^{1} (1952550657418016p+1)^{1} \bigr] -
b=38, p=19, \bigl[ ,(49840p+1)^{1} (1558120054802659015318p+1)^{1} \bigr] -
b=38, p=23, \bigl[ ,(2586722019380p+1)^{1} (42718457843872412594p+1)^{1} \bigr] -
b=38, p=29, \bigl[ ,(8p+1)^{1} ,(758264p+1)^{1} ,(37679766834860p+1)^{1} (1084036734107386790p+1)^{1} \bigr] -
b=38, p=31, \bigl[ ,(1186p+1)^{1} ,(54421986p+1)^{1} (132170277479912775526557543585646p+1)^{1} \bigr] -
b=38, p=37, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(694p+1)^{1} ,(157470p+1)^{1} (3736028402673770733141724725685147097856598p+1)^{1} \bigr] -
b=38, p=41, \bigl[ ,(2p+1)^{1} ,(632p+1)^{1} ,(3468p+1)^{1} ,(544468534152048p+1)^{1} (5700637827992739767941351236155388p+1)^{1} \bigr] -
b=38, p=43, \bigl[ ,(20019256p+1)^{1} ,(67677841074p+1)^{1} ,(2059345683416554p+1)^{1} (241543538603234028683925894p+1)^{1} \bigr] -
b=38, p=47, \bigl[ ,(6p+1)^{1} ,(8205580829950374p+1)^{1} (936560500913056853807176671495800268142141667215734p+1)^{1} \bigr] -
b=39, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{3}} (2p+1)^{1} \bigr] -
b=39, p=3, \bigl[ ,(2p+1)^{1} (74p+1)^{1} \bigr] -
b=39, p=5, \bigl[ ,(6p+1)^{1} ,(38p+1)^{1} (80p+1)^{1} \bigr] -
b=39, p=7, \bigl[ ,(408p+1)^{1} (180576p+1)^{1} \bigr] -
b=39, p=11, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(230p+1)^{1} (146596772p+1)^{1} \bigr] -
b=39, p=13, \bigl[ ,(10p+1)^{1} ,(12p+1)^{1} (47527174301614p+1)^{1} \bigr] -
b=39, p=17, \bigl[ ,(18410p+1)^{1} (5525374307406481730p+1)^{1} \bigr] -
b=39, p=19, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(7720p+1)^{1} ,(5621520298p+1)^{1} (7905975948p+1)^{1} \bigr] -
b=39, p=23, \bigl[ ,(26p+1)^{1} ,(3030236p+1)^{1} (107731674666310047386430p+1)^{1} \bigr] -
b=39, p=29, \bigl[ ,(10806770p+1)^{1} ,(170935155990270p+1)^{1} (8079206543537924420p+1)^{1} \bigr] -
b=39, p=31, \bigl[ ,(46p+1)^{1} ,(2701959287940p+1)^{1} ,(3515774802606p+1)^{1} (1370914330959148p+1)^{1} \bigr] -
b=39, p=37, \bigl[ ,(4p+1)^{1} ,(114425692585032610p+1)^{1} (83462924297286510763866403996692174p+1)^{1} \bigr] -
b=39, p=41, \bigl[ ,(70376p+1)^{1} ,(87723998p+1)^{1} ,(8070004397184816p+1)^{1} (32012010252271830477134276790p+1)^{1} \bigr] -
b=39, p=43, \bigl[ ,(4132p+1)^{1} ,(4995835554p+1)^{1} (4176555406875743695964099536591273523194784680030p+1)^{1} \bigr] -
b=39, p=47, \bigl[ ,(3339532115037190861424706p+1)^{1} (2149668999357344130120643095641092060074243498p+1)^{1} \bigr] -
b=40, p=2, \bigl[ (20p+1)^{1} \bigr] -
b=40, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (182p+1)^{1} \bigr] -
b=40, p=5, \bigl[ (525128p+1)^{1} \bigr] -
b=40, p=7, \bigl[ (600146520p+1)^{1} \bigr] -
b=40, p=11, \bigl[ ,(6p+1)^{1} ,(13520p+1)^{1} (98119542p+1)^{1} \bigr] -
b=40, p=13, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(52p+1)^{1} ,(532p+1)^{1} (21743133444p+1)^{1} \bigr] -
b=40, p=17, \bigl[ ,(14p+1)^{1} ,(19482698p+1)^{1} (32734853521268p+1)^{1} \bigr] -
b=40, p=19, \bigl[ (3709553400053981106612685560p+1)^{1} \bigr] -
b=40, p=23, \bigl[ (7844899016461984392419175027870680p+1)^{1} \bigr] -
b=40, p=29, \bigl[ (25484560225615538815207780725022104332449160p+1)^{1} \bigr] -
b=40, p=31, \bigl[ ,(36p+1)^{1} ,(418p+1)^{1} (2635170786871244571360083473476465660766p+1)^{1} \bigr] -
b=40, p=37, \bigl[ ,(61270p+1)^{1} ,(31008984p+1)^{1} ,(5673117076p+1)^{1} (239767779032353425503564990346p+1)^{1} \bigr] -
b=40, p=41, \bigl[ ,(2p+1)^{1} ,(11568p+1)^{1} ,(104402p+1)^{1} ,(57593190769711620190436p+1)^{1} (760050173978545481762892p+1)^{1} \bigr] -
b=40, p=43, \bigl[ ,(11073924p+1)^{1} ,(436900336p+1)^{1} (51573396633001585336166554076273087254583624404p+1)^{1} \bigr] -
b=40, p=47, \bigl[ ,(27441148308p+1)^{1} (837832086463711259796048332524406845917240211569456655086356p+1)^{1} \bigr]
-
b=41, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,\color{magenta}\bm{(1p+1)^{1}} \color{magenta}\bm{(3p+1)^{1}} \bigr] -
b=41, p=3, \bigl[ (574p+1)^{1} \bigr] -
b=41, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (115856p+1)^{1} \bigr] -
b=41, p=7, \bigl[ ,(6p+1)^{1} (16175604p+1)^{1} \bigr] -
b=41, p=11, \bigl[ ,(2p+1)^{1} ,(12086p+1)^{1} (409037730p+1)^{1} \bigr] -
b=41, p=13, \bigl[ ,(910p+1)^{1} ,(8536p+1)^{1} (1355076042p+1)^{1} \bigr] -
b=41, p=17, \bigl[ ,(11871524p+1)^{1} (19048520654685116p+1)^{1} \bigr] -
b=41, p=19, \bigl[ ,(660p+1)^{1} ,(4601256408p+1)^{1} (5273725020378p+1)^{1} \bigr] -
b=41, p=23, \bigl[ ,(1236p+1)^{1} ,(37687084615716p+1)^{1} (547720397847354p+1)^{1} \bigr] -
b=41, p=29, \bigl[ ,(2p+1)^{1} ,(12p+1)^{1} ,(8582p+1)^{1} ,(2387535122p+1)^{1} (143304687698714708912222p+1)^{1} \bigr] -
b=41, p=31, \bigl[ ,(12p+1)^{1} ,(179452p+1)^{1} ,(97452010p+1)^{1} (12755763878382067187303688888p+1)^{1} \bigr] -
b=41, p=37, \bigl[ ,(6p+1)^{1} ,(40p+1)^{1} ,(490p+1)^{1} (53144619718587649974651071725993458350340840384p+1)^{1} \bigr] -
b=41, p=41, \bigl[ ,(2p+1)^{1} ,(42740p+1)^{1} ,(501638p+1)^{1} ,(45777056368068366p+1)^{1} (144541160724182866775451164798p+1)^{1} \bigr] -
b=41, p=43, \bigl[ ,(22p+1)^{1} (1373496044481710216987073085176803772201247491467384961973279696p+1)^{1} \bigr] -
b=41, p=47, \bigl[ ,(211873717432520990p+1)^{1} ,(1661578309932553580132556p+1)^{1} (4324040965783192788675732344p+1)^{1} \bigr] -
b=42, p=2, \bigl[ \color{magenta}\bm{(21p+1)^{1}} \bigr] -
b=42, p=3, \bigl[ ,(4p+1)^{1} (46p+1)^{1} \bigr] -
b=42, p=5, \bigl[ ,(2p+1)^{1} ,(36p+1)^{1} (320p+1)^{1} \bigr] -
b=42, p=7, \bigl[ ,(550p+1)^{1} (208588p+1)^{1} \bigr] -
b=42, p=11, \bigl[ ,(90p+1)^{1} ,(270p+1)^{1} (540243246p+1)^{1} \bigr] -
b=42, p=13, \bigl[ ,(4p+1)^{1} ,(9230694p+1)^{1} (373301716p+1)^{1} \bigr] -
b=42, p=17, \bigl[ ,(68118p+1)^{1} (4878586099436480016p+1)^{1} \bigr] -
b=42, p=19, \bigl[ ,(12p+1)^{1} ,(24p+1)^{1} ,(238p+1)^{1} ,(78021162p+1)^{1} (12707343634p+1)^{1} \bigr] -
b=42, p=23, \bigl[ ,(2p+1)^{1} ,(10495273430p+1)^{1} (2020237995701914962630p+1)^{1} \bigr] -
b=42, p=29, \bigl[ ,(932954p+1)^{1} (3687986493861306388853699860229119148p+1)^{1} \bigr] -
b=42, p=31, \bigl[ ,(840360562p+1)^{1} (6320553257717001009285083863417274008p+1)^{1} \bigr] -
b=42, p=37, \bigl[ ,(16p+1)^{1} ,(90p+1)^{1} ,(51902170p+1)^{1} ,(65657724p+1)^{1} ,(1163771198368p+1)^{1} (1908379402997760754p+1)^{1} \bigr] -
b=42, p=41, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(20p+1)^{1} ,(20213883728p+1)^{1} ,(9734562827862979680p+1)^{1} (190981917693631709217368018p+1)^{1} \bigr] -
b=42, p=43, \bigl[ ,(323494p+1)^{1} ,(82380728325158281932240916p+1)^{1} (72583578385580806891729918924080p+1)^{1} \bigr] -
b=42, p=47, \bigl[ ,(6p+1)^{1} ,(3606p+1)^{1} ,(4973484p+1)^{1} ,(10131514854860150p+1)^{1} (1907179313020967448811741571555240832968p+1)^{1} \bigr] -
b=43, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{2}} \color{magenta}\bm{(5p+1)^{1}} \bigr] -
b=43, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (210p+1)^{1} \bigr] -
b=43, p=5, \bigl[ (700040p+1)^{1} \bigr] -
b=43, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(834p+1)^{1} (22620p+1)^{1} \bigr] -
b=43, p=11, \bigl[ ,(548918p+1)^{1} (333127746p+1)^{1} \bigr] -
b=43, p=13, \bigl[ (3147003890626906200p+1)^{1} \bigr] -
b=43, p=17, \bigl[ ,(38p+1)^{1} ,(3339432404p+1)^{1} (223995696218p+1)^{1} \bigr] -
b=43, p=19, \bigl[ ,(12p+1)^{1} ,(142p+1)^{1} ,(222p+1)^{1} ,(2442p+1)^{1} (112497080460418p+1)^{1} \bigr] -
b=43, p=23, \bigl[ ,(489742948766520p+1)^{1} (3412725237124906844p+1)^{1} \bigr] -
b=43, p=29, \bigl[ ,(18p+1)^{1} ,(362p+1)^{1} ,(110620788167832p+1)^{1} (10940912695925673676224p+1)^{1} \bigr] -
b=43, p=31, \bigl[ ,(228p+1)^{1} ,(1216528p+1)^{1} (1250458671214898695534225154654127952p+1)^{1} \bigr] -
b=43, p=37, \bigl[ ,(318802068p+1)^{1} ,(347511256p+1)^{1} ,(29675202644794p+1)^{1} (10602126222819291224934p+1)^{1} \bigr] -
b=43, p=41, \bigl[ ,(306p+1)^{1} ,(5504379692380579152p+1)^{1} (1923717930765368923218518197181682729050p+1)^{1} \bigr] -
b=43, p=43, \bigl[ ,(4p+1)^{1} ,(2800p+1)^{1} (461051720287959860546654630714149530213163508879542555636680p+1)^{1} \bigr] -
b=43, p=47, \bigl[ ,(2314643472145050780p+1)^{1} (276113919215486167226230218422822017942956495873945896p+1)^{1} \bigr] -
b=44, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{2}} (2p+1)^{1} \bigr] -
b=44, p=3, \bigl[ ,(2p+1)^{1} (94p+1)^{1} \bigr] -
b=44, p=5, \bigl[ (767052p+1)^{1} \bigr] -
b=44, p=7, \bigl[ ,(34p+1)^{1} ,(166p+1)^{1} (3816p+1)^{1} \bigr] -
b=44, p=11, \bigl[ ,(576p+1)^{1} (399240502452p+1)^{1} \bigr] -
b=44, p=13, \bigl[ ,(4p+1)^{1} ,(24p+1)^{1} ,(366p+1)^{1} ,(4792p+1)^{1} (842694p+1)^{1} \bigr] -
b=44, p=17, \bigl[ ,(854p+1)^{1} (818165981578493619914p+1)^{1} \bigr] -
b=44, p=19, \bigl[ ,(12p+1)^{2} ,(61980p+1)^{1} (333197926701746640p+1)^{1} \bigr] -
b=44, p=23, \bigl[ ,(6p+1)^{1} ,(44p+1)^{1} ,(21074p+1)^{1} ,(16518587882p+1)^{1} (2457053200574p+1)^{1} \bigr] -
b=44, p=29, \bigl[ ,(338p+1)^{1} ,(660254408p+1)^{1} (1953407517514729731454403999382p+1)^{1} \bigr] -
b=44, p=31, \bigl[ (664053120185089594713450746753165812758083837700p+1)^{1} \bigr] -
b=44, p=37, \bigl[ ,(22962738p+1)^{1} (4751748596697973037073542170552846242337595502126p+1)^{1} \bigr] -
b=44, p=41, \bigl[ ,(2p+1)^{1} ,(1218p+1)^{1} ,(101940p+1)^{1} ,(18867895001252243772p+1)^{1} (1018951686112736595360637181300p+1)^{1} \bigr] -
b=44, p=43, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(17645846112396p+1)^{1} (772589460181554267822501062575631729019755747269854p+1)^{1} \bigr] -
b=44, p=47, \bigl[ ,(14p+1)^{1} ,(90p+1)^{1} ,(3254p+1)^{1} ,(4774674062178p+1)^{1} ,(8187805773708p+1)^{1} (2347230917370585046592861762092224p+1)^{1} \bigr] -
b=45, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} \color{magenta}\bm{(11p+1)^{1}} \bigr] -
b=45, p=3, \bigl[ ,(6p+1)^{1} (36p+1)^{1} \bigr] -
b=45, p=5, \bigl[ ,(294p+1)^{1} (570p+1)^{1} \bigr] -
b=45, p=7, \bigl[ ,(4p+1)^{1} ,(10p+1)^{1} (589224p+1)^{1} \bigr] -
b=45, p=11, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(8p+1)^{1} (3233773502268p+1)^{1} \bigr] -
b=45, p=13, \bigl[ ,(10p+1)^{1} ,(28820400p+1)^{1} (110522830p+1)^{1} \bigr] -
b=45, p=17, \bigl[ ,(90p+1)^{1} (11110559912966141932770p+1)^{1} \bigr] -
b=45, p=19, \bigl[ (30819918383205726135290410530p+1)^{1} \bigr] -
b=45, p=23, \bigl[ ,(6p+1)^{1} (751090906657030539235839710327256p+1)^{1} \bigr] -
b=45, p=29, \bigl[ ,(2p+1)^{1} ,(1091866653697410152p+1)^{1} (368037958485086120429310p+1)^{1} \bigr] -
b=45, p=31, \bigl[ ,(61050p+1)^{1} ,(596760p+1)^{1} ,(27900388p+1)^{1} (43012293966351363803561368p+1)^{1} \bigr] -
b=45, p=37, \bigl[ ,(40p+1)^{1} ,(684564p+1)^{1} ,(82686139489494p+1)^{1} ,(371594962742184p+1)^{1} (5742906832123054p+1)^{1} \bigr] -
b=45, p=41, \bigl[ ,(285833854426726730p+1)^{1} (2861402874637726968571496688468560269288550090p+1)^{1} \bigr] -
b=45, p=43, \bigl[ ,(456p+1)^{1} ,(4000p+1)^{1} ,(12829810p+1)^{1} ,(913835558307805131540p+1)^{1} (885534227647924179320814876p+1)^{1} \bigr] -
b=45, p=47, \bigl[ ,(24p+1)^{1} ,(3292004p+1)^{1} ,(1102921367534969652313724p+1)^{1} (26825204875159537171844116644493479774p+1)^{1} \bigr] -
b=46, p=2, \bigl[ \color{magenta}\bm{(23p+1)^{1}} \bigr] -
b=46, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(2p+1)^{1} (34p+1)^{1} \bigr] -
b=46, p=5, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (183078p+1)^{1} \bigr] -
b=46, p=7, \bigl[ (1383548118p+1)^{1} \bigr] -
b=46, p=11, \bigl[ ,(66p+1)^{1} ,(128p+1)^{1} ,(16526p+1)^{1} (21170p+1)^{1} \bigr] -
b=46, p=13, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(12p+1)^{1} ,(42p+1)^{1} ,(1852p+1)^{1} (815274p+1)^{1} \bigr] -
b=46, p=17, \bigl[ ,(80p+1)^{1} (17756754006612992813898p+1)^{1} \bigr] -
b=46, p=19, \bigl[ (45754381311911904630505119102p+1)^{1} \bigr] -
b=46, p=23, \bigl[ ,(9750p+1)^{1} ,(396272p+1)^{1} ,(644376p+1)^{1} (5586848544692760p+1)^{1} \bigr] -
b=46, p=29, \bigl[ ,(2p+1)^{1} ,(8p+1)^{1} ,(50p+1)^{1} ,(1190p+1)^{1} ,(75554p+1)^{1} ,(1342122311604p+1)^{1} (21661472029818p+1)^{1} \bigr] -
b=46, p=31, \bigl[ ,(22p+1)^{1} ,(256p+1)^{1} ,(63676p+1)^{1} ,(1621042p+1)^{1} (4681099073625471540298190190p+1)^{1} \bigr] -
b=46, p=37, \bigl[ ,(4p+1)^{1} ,(60673398498275728p+1)^{1} (59736423897279117824764230150892529574p+1)^{1} \bigr] -
b=46, p=41, \bigl[ ,(228p+1)^{1} ,(618p+1)^{1} (340816095837900231250845481719993269006023782346521210380p+1)^{1} \bigr] -
b=46, p=43, \bigl[ ,(2964p+1)^{1} ,(10957285750p+1)^{1} (2712590818435538461637549267197917616025437954250500p+1)^{1} \bigr] -
b=46, p=47, \bigl[ ,(20p+1)^{1} ,(349604883792348336956p+1)^{1} (43156155084557638511362051925699379406221897076454p+1)^{1} \bigr] -
b=47, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{4}} \color{magenta}\bm{(1p+1)^{1}} \bigr] -
b=47, p=3, \bigl[ ,(12p+1)^{1} (20p+1)^{1} \bigr] -
b=47, p=5, \bigl[ ,(2p+1)^{1} ,(6p+1)^{1} (2924p+1)^{1} \bigr] -
b=47, p=7, \bigl[ ,(6p+1)^{1} (36589854p+1)^{1} \bigr] -
b=47, p=11, \bigl[ ,(12246p+1)^{1} (36269014590p+1)^{1} \bigr] -
b=47, p=13, \bigl[ ,(4p+1)^{1} ,(172p+1)^{1} ,(1080816p+1)^{1} (5481936p+1)^{1} \bigr] -
b=47, p=17, \bigl[ ,(210p+1)^{1} ,(594p+1)^{1} ,(125138678p+1)^{1} (444168878p+1)^{1} \bigr] -
b=47, p=19, \bigl[ ,(22p+1)^{1} ,(3434066914p+1)^{1} (2463607348997412p+1)^{1} \bigr] -
b=47, p=23, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(288272814p+1)^{1} (1780351296634228271130884p+1)^{1} \bigr] -
b=47, p=29, \bigl[ ,(12710093684p+1)^{1} (6297023310322813036437676506803708p+1)^{1} \bigr] -
b=47, p=31, \bigl[ ,(10p+1)^{1} ,(3090p+1)^{1} (161001148623269117950105888899853883567656p+1)^{1} \bigr] -
b=47, p=37, \bigl[ ,(4036p+1)^{1} ,(10428p+1)^{1} (751798622872101258368946391145048520663678238960p+1)^{1} \bigr] -
b=47, p=41, \bigl[ ,(2978p+1)^{1} ,(8216p+1)^{1} ,(127399730p+1)^{1} ,(493570593752p+1)^{1} (43876028013013819047456921192888p+1)^{1} \bigr] -
b=47, p=43, \bigl[ ,(4p+1)^{1} ,(30p+1)^{1} ,(130116744p+1)^{1} (321519720629840441106132794791365059001344268519305794p+1)^{1} \bigr] -
b=47, p=47, \bigl[ ,(36p+1)^{1} ,(5441329636101351307971032557210128p+1)^{1} (4142702830129770814192942535749872588p+1)^{1} \bigr] -
b=48, p=2, \bigl[ \color{magenta}\bm{(3p+1)^{2}} \bigr] -
b=48, p=3, \bigl[ ,(4p+1)^{1} (60p+1)^{1} \bigr] -
b=48, p=5, \bigl[ ,(2p+1)^{1} ,(108p+1)^{1} (182p+1)^{1} \bigr] -
b=48, p=7, \bigl[ ,(10p+1)^{1} (25132426p+1)^{1} \bigr] -
b=48, p=11, \bigl[ ,(2p+1)^{1} ,(3578p+1)^{1} (6658726488p+1)^{1} \bigr] -
b=48, p=13, \bigl[ ,(24p+1)^{1} ,(67990p+1)^{1} (42477764542p+1)^{1} \bigr] -
b=48, p=17, \bigl[ ,(79785304560p+1)^{1} (35170814621760p+1)^{1} \bigr] -
b=48, p=19, \bigl[ (98340418295036133766447327248p+1)^{1} \bigr] -
b=48, p=23, \bigl[ ,(1165585502p+1)^{1} ,(7190207990p+1)^{1} (97270579541616p+1)^{1} \bigr] -
b=48, p=29, \bigl[ ,(2p+1)^{1} ,(110004147354221339702p+1)^{1} (22224958534200527053260p+1)^{1} \bigr] -
b=48, p=31, \bigl[ ,(330312p+1)^{1} (880506809613787505862358970587469631915720p+1)^{1} \bigr] -
b=48, p=37, \bigl[ ,(1776658p+1)^{1} ,(535671828p+1)^{1} (70912060309836886916381634485355307224814p+1)^{1} \bigr] -
b=48, p=41, \bigl[ ,(2p+1)^{1} ,(98p+1)^{1} (1326822779799010693439039925192445871388020790068105710885032p+1)^{1} \bigr] -
b=48, p=43, \bigl[ ,(10p+1)^{1} ,(852p+1)^{1} ,(1880346717797556p+1)^{1} (761558600393734160618306746400131027281650770p+1)^{1} \bigr] -
b=48, p=47, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(264p+1)^{1} ,(1070p+1)^{1} ,(257900148p+1)^{1} (13282140734454067860520310015687285940226436616869699136p+1)^{1} \bigr] -
b=49, p=2, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (2p+1)^{2} \bigr] -
b=49, p=3, \bigl[ ,\color{red}\bm{(1p+0)^{1}} ,(6p+1)^{1} (14p+1)^{1} \bigr] -
b=49, p=5, \bigl[ ,(2p+1)^{1} ,(38p+1)^{1} (560p+1)^{1} \bigr] -
b=49, p=7, \bigl[ ,(4p+1)^{1} ,(16p+1)^{1} ,(130p+1)^{1} (676p+1)^{1} \bigr] -
b=49, p=11, \bigl[ ,(2p+1)^{1} ,(102p+1)^{1} ,(26678p+1)^{1} (976940p+1)^{1} \bigr] -
b=49, p=13, \bigl[ ,(4p+1)^{1} ,(17577832p+1)^{1} (1242166800p+1)^{1} \bigr] -
b=49, p=17, \bigl[ ,(824p+1)^{1} ,(162801864p+1)^{1} (1710518485200p+1)^{1} \bigr] -
b=49, p=19, \bigl[ ,(22p+1)^{1} ,(18480p+1)^{1} ,(213580878p+1)^{1} (238640354758p+1)^{1} \bigr] -
b=49, p=23, \bigl[ ,(2p+1)^{1} ,(134p+1)^{1} ,(1368687973772p+1)^{1} (148743192065657154p+1)^{1} \bigr] -
b=49, p=29, \bigl[ ,(2p+1)^{1} ,(4397940p+1)^{1} ,(2459204240862p+1)^{1} (13878904119884395374300p+1)^{1} \bigr] -
b=49, p=31, \bigl[ ,(10p+1)^{1} ,(12p+1)^{1} ,(682p+1)^{1} ,(314658p+1)^{1} ,(174855062812668p+1)^{1} (129002847722563368p+1)^{1} \bigr] -
b=49, p=37, \bigl[ ,(4p+1)^{1} ,(6p+1)^{1} ,(78p+1)^{1} ,(129874192148440966702200p+1)^{1} (420871483788716993979075904p+1)^{1} \bigr] -
b=49, p=41, \bigl[ ,(2p+1)^{1} ,(118278p+1)^{1} ,(219512p+1)^{1} ,(500388p+1)^{1} ,(39908750p+1)^{1} ,(1902671112p+1)^{1} (106393642347050455026702p+1)^{1} \bigr] -
b=49, p=43, \bigl[ ,(22p+1)^{1} ,(462p+1)^{1} ,(486p+1)^{1} ,(3804p+1)^{1} ,(5470p+1)^{1} ,(88350p+1)^{1} ,(110460p+1)^{1} ,(3860549019591832p+1)^{1} (50989234006306480p+1)^{1} \bigr] -
b=49, p=47, \bigl[ ,(291974824457930p+1)^{1} ,(1354925787157841499138p+1)^{1} (13945048714777403283142177443781785786p+1)^{1} \bigr] -
b=50, p=2, \bigl[ ,\color{magenta}\bm{(1p+1)^{1}} (8p+1)^{1} \bigr] -
b=50, p=3, \bigl[ (850p+1)^{1} \bigr] -
b=50, p=5, \bigl[ (1275510p+1)^{1} \bigr] -
b=50, p=7, \bigl[ ,\color{red}\bm{(1p+0)^{1}} (325385256p+1)^{1} \bigr] -
b=50, p=11, \bigl[ ,(2p+1)^{1} ,(90p+1)^{1} ,(6698p+1)^{1} (5394312p+1)^{1} \bigr] -
b=50, p=13, \bigl[ ,(48237606p+1)^{1} (30559167936p+1)^{1} \bigr] -
b=50, p=17, \bigl[ ,(8p+1)^{1} ,(2549411408p+1)^{1} (15425372447334p+1)^{1} \bigr] -
b=50, p=19, \bigl[ ,(2208321908194p+1)^{1} (4882749221564488p+1)^{1} \bigr] -
b=50, p=23, \bigl[ ,(2p+1)^{1} ,(39570320p+1)^{1} (24728110166434202581555824p+1)^{1} \bigr] -
b=50, p=29, \bigl[ ,(7584p+1)^{1} ,(38514179755480569438p+1)^{1} (53360402892373722360p+1)^{1} \bigr] -
b=50, p=31, \bigl[ ,(5898p+1)^{1} ,(938952p+1)^{1} ,(20032848814570p+1)^{1} (9275429222255204514922p+1)^{1} \bigr] -
b=50, p=37, \bigl[ ,(11582053886317936p+1)^{1} (936494111770236847974581535998069371207558p+1)^{1} \bigr] -
b=50, p=41, \bigl[ ,(639279711927342p+1)^{1} ,(317541228513501577192296p+1)^{1} (6633328190336453728379400p+1)^{1} \bigr] -
b=50, p=43, \bigl[ ,(1362p+1)^{1} ,(190445700341651692622804680p+1)^{1} (11250013525316669428509851354024732224p+1)^{1} \bigr] -
b=50, p=47, \bigl[ ,(330p+1)^{1} ,(488p+1)^{1} ,(3368601906p+1)^{1} ,(662483235030916928p+1)^{1} (17591365619983127882254169976686386146p+1)^{1} \bigr]
素因数の形に言及していそうな部分:
If
is an odd prime, then every prime p that divides q must be either R_p^{(b)} plus a multiple of 1 , or a factor of 2p . For example, a prime factor of b − 1 is R_{29} . The reason is that the prime p is the smallest exponent greater than 62003 = 1 + 2\cdot 29\cdot 1069 such that 1 divides q , because b^p − 1 is prime. Therefore, unless p divides q , b − 1 divides the Carmichael function of p , which is even and equal to q . q − 1
が奇素数の場合、 p を割るすべての素数 R_p^{(b)} は q の倍数に 2p を加えた数か、 1 の素因数のどちらかでなければならない。例えば、 b - 1 の素因数は R_{29} である。これは、 62003 = 1 + 2 \cdot 29 \cdot 1069 が素数なので、 p が q を割るような b^p - 1 より大きい最小の指数が素数 1 であるからである。したがって、 p が q を割らない限り、 b - 1 は p の カーマイケル関数 を割り、 q に等しい偶数であることがわかる。 q - 1
Properties of the Carmichael function
In this section, an integer
is divisible by a nonzero integer \displaystyle n if there exists an integer \displaystyle m such that \displaystyle k . This is written as \displaystyle n=km
. \displaystyle m\mid n Order of elements modulo n
Let
and a be coprime and let n be the smallest exponent with m , then it holds that a^m\equiv 1 (\operatorname{mod}n)
. \displaystyle m\,|\,\lambda (n) That is, the order
of a unit m := \operatorname{ord}_n(a) in the ring of integers modulo a divides n and \lambda(n)
\displaystyle \lambda (n)=\max\{\operatorname{ord}_{n}(a)\,\colon\,\operatorname{gcd}(a,n)=1\}
カーマイケル関数の性質
この節では、整数
が非零整数 \displaystyle n で割り切れるのは、 \displaystyle m のような整数 \displaystyle n=km が存在するときである、とする。これは次のように書かれる。 \displaystyle k
. \displaystyle m\mid n 法 n の位数
と a を互いに素な数とし、 n を、 m を満たす最小の指数とすると、以下の式が成り立つ。 a^m\equiv 1 ( \operatorname{mod}n)
. \displaystyle m\,|\,\lambda (n) すなわち、整数環 modulo
における単位 n の位数 a が m := \operatorname{ord}_n(a) を割り、かつ \lambda(n)
\displaystyle \lambda (n)=\max\{\operatorname{ord}_{n}(a)\,\colon\,\operatorname{gcd}(a,n)=1\}
数学において位数 (いすう、 英: order [1])とは,階数・次数などと同じくある種の指標 (index) として働く数に用いられる。
- 群
の位数とは、群 G の元の数のことである。 G - 群
の元 G の位数とは、 g を e の単位元として、 G を満たす最小の正の整数 g^n = e のことである。そのような n が存在しないときは、 n の位数は g とする。 \infty - 初等整数論における位数とは、互いに素な正の整数
と整数 m に対して a なる合同式が成り立つような最小の正の整数 a^d \equiv 1 (\operatorname{mod} m) のことである。このような d を、 d を法とする m の位数(multiplicative order of a modulo a )と呼び、 m や \operatorname{ord}_m(a) などと記す。 \operatorname{O}_m(a)
素数
性質
実際に円分多項式を計算すると以下のようになる。
\begin{align*}\Phi_{1}&=x-1\\\Phi_{2}&=(x^2-1)/\Phi_1&&=x+1\\\Phi_{3}&=(x^3-1)/\Phi_1&&=x^2+x+1\\\Phi_{4}&=(x^4-1)/\Phi_1\Phi_2&&=x^2+1\\\Phi_{5}&=(x^5-1)/\Phi_1&&=x^4+x^3+x^2+x+1\\\Phi_{6}&=(x^6-1)/\Phi_1\Phi_2\Phi_3&&=x^2-x+1\\\Phi_{7}&=(x^7-1)/\Phi_1&&=x^6+x^5+x^4+x^3+x^2+x+1\\\Phi_{8}&=(x^8-1)/\Phi_1\Phi_2\Phi_4&&=x^4+1\\\Phi_{9}&=(x^9-1)/\Phi_1\Phi_3&&=x^6+x^3+1\\\Phi_{10}&=(x^{10}-1)/\Phi_1\Phi_2\Phi_5&&=x^4-x^3+x^2-x+1\\\Phi_{11}&=(x^{11}-1)/\Phi_1&&=x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\\Phi_{12}&=(x^{12}-1)/\Phi_1\Phi_2\Phi_3\Phi_4\Phi_6&&=x^4-x^2+1\\\end{align*}
円分多項式の次数はその性質上オイラーの関数を用いれば \varphi に等しい。また、上記の例では係数が \varphi(n) しか現れないが、必ずそうなるわけではない。実際 1, −1, 0 がそうでない最小の例で係数に \Phi_{105}(x) が現れる。 −2
\begin{align*}\Phi_{105}(x)&=x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2 x^{41}-x^{40}-x^{39}+x^{36}\\&\qquad\quad+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{24}\\&\qquad\quad-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}\\&\qquad\quad-x^9-x^8-2 x^7-x^6-x^5+x^2+x+1\end{align*}
補題7
を a 以上の整数とする。このとき、任意の整数 2 に対して、 k の素因数は \Phi_a(k) の約数であるか、ある自然数 a を用いて n と書ける。 an+1 証明.
と書ける( X^a−1=\Phi_a(X)F(X) )。 F(X)\in\mathbb{Z}[X] を代入することにより X=k を得る。 k^a−1=\Phi_a(k)F(k) のときを考えればよい。 \Phi_a(k)\ne\pm 1 の素因数を勝手にとって \Phi_a(k) とする。このとき、 p が成り立つ。よって、 k^q\equiv 1(\operatorname{mod}p) の k における位数を (\mathbb{Z}/p\mathbb{Z})^\times とすればある自然数 e が存在して b と書ける。 a=eb のときを考える。このとき、 b\ge 2 と X^e−1 は共通因数をもたない( \Phi_a(X) の根は X^e−1 の原始 1 乗根ではない)ので、 a である。その商を X^e−1\mid F(x) とすれば G(x)\in\mathbb{Z}[X]
\Phi_a(X)G(X)=X^{e(b−1)}+X^{e(b−2)}+⋯+X^e+1
が成り立つ。に X を代入して、 k の定義より成り立つ e を適用することにより、 k^e\equiv 1(\operatorname{mod}p) が従う。よって、 b\equiv\Phi_a(k)G(k)\equiv 0(\operatorname{mod}p) 、すなわち p\mid a=eb は p の約数である。次に a と仮定する。このときはFermatの小定理によって a=e である。すなわち、ある自然数 e\mid p−1 が存在して n が成り立つ。 p=an+1 \mathbf{Q.E.D.}