AutoTrain AdvancedでPhi-3のファインチューニング
準備
環境
- CPU: Intel Core i9-13900F
- メモリ: 96GB
- GPU: NVIDIA GeForce RTX 4090 24GB
- OS: Ubutu 22.04
仮想環境作ってJupyterLabで実施する(ここは割愛)
パッケージインストール
!pip install autotrain-advanced torch torchvision torchaudio
autotrainのコマンドオプションは以下の様な感じ
!autotrain llm --help
usage: autotrain <command> [<args>] llm [-h] [--train] [--deploy]
[--inference] [--username USERNAME]
[--backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}]
[--token TOKEN] [--push-to-hub]
--model MODEL --project-name
PROJECT_NAME [--data-path DATA_PATH]
[--train-split TRAIN_SPLIT]
[--valid-split VALID_SPLIT]
[--batch-size BATCH_SIZE]
[--seed SEED] [--epochs EPOCHS]
[--gradient_accumulation GRADIENT_ACCUMULATION]
[--disable_gradient_checkpointing]
[--lr LR]
[--log {none,wandb,tensorboard}]
[--text_column TEXT_COLUMN]
[--rejected_text_column REJECTED_TEXT_COLUMN]
[--prompt-text-column PROMPT_TEXT_COLUMN]
[--model-ref MODEL_REF]
[--warmup_ratio WARMUP_RATIO]
[--optimizer OPTIMIZER]
[--scheduler SCHEDULER]
[--weight_decay WEIGHT_DECAY]
[--max_grad_norm MAX_GRAD_NORM]
[--add_eos_token]
[--block_size BLOCK_SIZE] [--peft]
[--lora_r LORA_R]
[--lora_alpha LORA_ALPHA]
[--lora_dropout LORA_DROPOUT]
[--logging_steps LOGGING_STEPS]
[--evaluation_strategy {epoch,steps,no}]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--auto_find_batch_size]
[--mixed_precision {fp16,bf16,None}]
[--quantization {int4,int8,None}]
[--model_max_length MODEL_MAX_LENGTH]
[--max_prompt_length MAX_PROMPT_LENGTH]
[--max_completion_length MAX_COMPLETION_LENGTH]
[--trainer {default,dpo,sft,orpo,reward}]
[--target_modules TARGET_MODULES]
[--merge_adapter]
[--use_flash_attention_2]
[--dpo-beta DPO_BETA]
[--chat_template {tokenizer,chatml,zephyr,None}]
[--padding {left,right,None}]
✨ Run AutoTrain LLM
options:
-h, --help show this help message and exit
--train Command to train the model
--deploy Command to deploy the model (limited availability)
--inference Command to run inference (limited availability)
--username USERNAME Hugging Face Hub Username
--backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}
Backend to use: default or spaces. Spaces backend
requires push_to_hub & username. Advanced users only.
--token TOKEN Your Hugging Face API token. Token must have write
access to the model hub.
--push-to-hub Push to hub after training will push the trained model
to the Hugging Face model hub.
--model MODEL Base model to use for training
--project-name PROJECT_NAME
Output directory / repo id for trained model (must be
unique on hub)
--data-path DATA_PATH
Train dataset to use. When using cli, this should be a
directory path containing training and validation data
in appropriate formats
--train-split TRAIN_SPLIT
Train dataset split to use
--valid-split VALID_SPLIT
Validation dataset split to use
--batch-size BATCH_SIZE, --train-batch-size BATCH_SIZE
Training batch size to use
--seed SEED Random seed for reproducibility
--epochs EPOCHS Number of training epochs
--gradient_accumulation GRADIENT_ACCUMULATION, --gradient-accumulation GRADIENT_ACCUMULATION
Gradient accumulation steps
--disable_gradient_checkpointing, --disable-gradient-checkpointing, --disable-gc
Disable gradient checkpointing
--lr LR Learning rate
--log {none,wandb,tensorboard}
Use experiment tracking
--text_column TEXT_COLUMN, --text-column TEXT_COLUMN
Specify the dataset column to use for text data. This
parameter is essential for models processing textual
information. Default is 'text'.
--rejected_text_column REJECTED_TEXT_COLUMN, --rejected-text-column REJECTED_TEXT_COLUMN
Define the column to use for storing rejected text
entries, which are typically entries that do not meet
certain criteria for processing. Default is
'rejected'. Used only for orpo, dpo and reward
trainerss
--prompt-text-column PROMPT_TEXT_COLUMN, --prompt-text-column PROMPT_TEXT_COLUMN
Identify the column that contains prompt text for
tasks requiring contextual inputs, such as
conversation or completion generation. Default is
'prompt'. Used only for dpo trainer
--model-ref MODEL_REF
Reference model to use for DPO when not using PEFT
--warmup_ratio WARMUP_RATIO, --warmup-ratio WARMUP_RATIO
Set the proportion of training allocated to warming up
the learning rate, which can enhance model stability
and performance at the start of training. Default is
0.1
--optimizer OPTIMIZER
Choose the optimizer algorithm for training the model.
Different optimizers can affect the training speed and
model performance. 'adamw_torch' is used by default.
--scheduler SCHEDULER
Select the learning rate scheduler to adjust the
learning rate based on the number of epochs. 'linear'
decreases the learning rate linearly from the initial
lr set. Default is 'linear'. Try 'cosine' for a cosine
annealing schedule.
--weight_decay WEIGHT_DECAY, --weight-decay WEIGHT_DECAY
Define the weight decay rate for regularization, which
helps prevent overfitting by penalizing larger
weights. Default is 0.0
--max_grad_norm MAX_GRAD_NORM, --max-grad-norm MAX_GRAD_NORM
Set the maximum norm for gradient clipping, which is
critical for preventing gradients from exploding
during backpropagation. Default is 1.0.
--add_eos_token, --add-eos-token
Toggle whether to automatically add an End Of Sentence
(EOS) token at the end of texts, which can be critical
for certain types of models like language models. Only
used for `default` trainer
--block_size BLOCK_SIZE, --block-size BLOCK_SIZE
Specify the block size for processing sequences. This
is maximum sequence length or length of one block of
text. Setting to -1 determines block size
automatically. Default is -1.
--peft, --use-peft Enable LoRA-PEFT
--lora_r LORA_R, --lora-r LORA_R
Set the 'r' parameter for Low-Rank Adaptation (LoRA).
Default is 16.
--lora_alpha LORA_ALPHA, --lora-alpha LORA_ALPHA
Specify the 'alpha' parameter for LoRA. Default is 32.
--lora_dropout LORA_DROPOUT, --lora-dropout LORA_DROPOUT
Set the dropout rate within the LoRA layers to help
prevent overfitting during adaptation. Default is
0.05.
--logging_steps LOGGING_STEPS, --logging-steps LOGGING_STEPS
Determine how often to log training progress in terms
of steps. Setting it to '-1' determines logging steps
automatically.
--evaluation_strategy {epoch,steps,no}, --evaluation-strategy {epoch,steps,no}
Choose how frequently to evaluate the model's
performance, with 'epoch' as the default, meaning at
the end of each training epoch
--save_total_limit SAVE_TOTAL_LIMIT, --save-total-limit SAVE_TOTAL_LIMIT
Limit the total number of saved model checkpoints to
manage disk usage effectively. Default is to save only
the latest checkpoint
--auto_find_batch_size, --auto-find-batch-size
Automatically determine the optimal batch size based
on system capabilities to maximize efficiency.
--mixed_precision {fp16,bf16,None}, --mixed-precision {fp16,bf16,None}
Choose the precision mode for training to optimize
performance and memory usage. Options are 'fp16',
'bf16', or None for default precision. Default is
None.
--quantization {int4,int8,None}, --quantization {int4,int8,None}
Choose the quantization level to reduce model size and
potentially increase inference speed. Options include
'int4', 'int8', or None. Enabling requires --peft
--model_max_length MODEL_MAX_LENGTH, --model-max-length MODEL_MAX_LENGTH
Set the maximum length for the model to process in a
single batch, which can affect both performance and
memory usage. Default is 1024
--max_prompt_length MAX_PROMPT_LENGTH, --max-prompt-length MAX_PROMPT_LENGTH
Specify the maximum length for prompts used in
training, particularly relevant for tasks requiring
initial contextual input. Used only for `orpo`
trainer.
--max_completion_length MAX_COMPLETION_LENGTH, --max-completion-length MAX_COMPLETION_LENGTH
Completion length to use, for orpo: encoder-decoder
models only
--trainer {default,dpo,sft,orpo,reward}
Trainer type to use
--target_modules TARGET_MODULES, --target-modules TARGET_MODULES
Identify specific modules within the model
architecture to target with adaptations or
optimizations, such as LoRA. Comma separated list of
module names. Default is 'all-linear'.
--merge_adapter, --merge-adapter
Use this flag to merge PEFT adapter with the model
--use_flash_attention_2, --use-flash-attention-2, --use-fa2
Use flash attention 2
--dpo-beta DPO_BETA, --dpo-beta DPO_BETA
Beta for DPO trainer
--chat_template {tokenizer,chatml,zephyr,None}, --chat-template {tokenizer,chatml,zephyr,None}
Apply a specific template for chat-based interactions,
with options including 'tokenizer', 'chatml',
'zephyr', or None. This setting can shape the model's
conversational behavior.
--padding {left,right,None}, --padding {left,right,None}
Specify the padding direction for sequences, critical
for models sensitive to input alignment. Options
include 'left', 'right', or None
SFT
SFTに使うデータセットは以下の2種類が使える模様
- 単一のテキスト列のデータセット
- チャットテンプレート
-
--chat-template
パラメータで指定。 - 選択できるのは以下
- zephyr
- chatml
- tokenizer
- None
-
チャットテンプレートはよくわからなかったので、わかりやすい最初の例にしたがって、単一のテキスト列のデータセットを持つ日本語データセットを作成した。
これを使ってファインチューニングを行う。自分はPhi-3をすでにダウンロードしていたのでディレクトリで指定しているが、HFのモデルパスでもOK。
!autotrain llm \
--train \
--model ./models/Phi-3-mini-4k-instruct \
--data-path kun432/databricks-dolly-15k-ja-gozaru-simple \
--lr 2e-4 \
--batch-size 2 \
--epochs 1 \
--trainer sft \
--peft \
--project-name kun432-Phi-3-mini-4k-instruct
なお以下のオプションを付けるとHuggingFaceへのアップロードも行ってくれる模様だが今回は指定しなかった。
(snip)
--username kun432 \
--push-to-hub \
--token $HF_TOKEN
こんな感じでSFTが行われる。
INFO | 2024-04-26 08:44:25 | autotrain.trainers.common:on_train_begin:231 - Starting to train...
0%| | 0/1813 [00:00<?, ?it/s]You are not running the flash-attention implementation, expect numerical differences.
1%|▌ | 25/1813 [00:40<47:45, 1.60s/it]INFO | 2024-04-26 08:45:05 | autotrain.trainers.common:on_log:226 - {'loss': 1.8595, 'grad_norm': 0.8130138516426086, 'learning_rate': 2.7472527472527476e-05, 'epoch': 0.013789299503585218}
{'loss': 1.8595, 'grad_norm': 0.8130138516426086, 'learning_rate': 2.7472527472527476e-05, 'epoch': 0.01}
(snip)
99%|██████████████████████████████████████▋| 1800/1813 [48:32<00:21, 1.62s/it]INFO | 2024-04-26 09:32:57 | autotrain.trainers.common:on_log:226 - {'loss': 1.2187, 'grad_norm': 0.4867367744445801, 'learning_rate': 1.594114040465972e-06, 'epoch': 0.9928295642581357}
{'loss': 1.2187, 'grad_norm': 0.4867367744445801, 'learning_rate': 1.594114040465972e-06, 'epoch': 0.99}
100%|███████████████████████████████████████| 1813/1813 [48:52<00:00, 1.37s/it]INFO | 2024-04-26 09:33:17 | autotrain.trainers.common:on_log:226 - {'train_runtime': 2932.306, 'train_samples_per_second': 1.236, 'train_steps_per_second': 0.618, 'train_loss': 1.313210038670636, 'epoch': 1.0}
{'train_runtime': 2932.306, 'train_samples_per_second': 1.236, 'train_steps_per_second': 0.618, 'train_loss': 1.313210038670636, 'epoch': 1.0}
100%|███████████████████████████████████████| 1813/1813 [48:52<00:00, 1.62s/it]
INFO | 2024-04-26 09:33:17 | __main__:train:574 - Finished training, saving model...
なお、今回は約50分で完了。VRAM使用量は18GB程度だった。
Fri Apr 26 08:45:51 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 545.23.08 Driver Version: 545.23.08 CUDA Version: 12.3 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 4090 On | 00000000:01:00.0 Off | Off |
| 70% 77C P2 425W / 450W | 18624MiB / 24564MiB | 100% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
できたモデルを使って推論
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained(
"./kun432-Phi-3-mini-4k-instruct"
)
model = AutoModelForCausalLM.from_pretrained(
"./kun432-Phi-3-mini-4k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
chat = [
{"role": "user", "content": "まどか☆マギカでは誰が一番かわいい?"},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
temperature=0.6,
max_new_tokens=256,
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True)
print(output)
この質問は人工知能によって答えることができますが、人間が答えることが多いので、私は人間の答えを提供することになりますでござる。 人間は、ある程度固定されたランクであることを知っていますでござる。 まどか☆マギカのチャンネルでは、最も人気のあるキャラクターは、拙者たちの拙者たちを愛しているのですでござる。 そのキャラクターは、拙者たちの拙者たちを愛しているのですでござる。 最も人気のあるキャラクターは、拙者たちの拙者たちを愛しているので
chat = [
{"role": "user", "content": "競馬で馬券を当てるにはどうすればいい?ポイントを5つ挙げて。"},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
temperature=0.6,
max_new_tokens=512,
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True)
print(output)
ポイント1:競馬というアクティビティの習得を通じて、様々な種類の馬を知ることができ、それにより、より多くの選択肢ができるようになりますでござる。
ポイント2:馬の運動能力、健康状態、種類、そしてそれが競馬でどのように機能するかを理解することです。
ポイント3:準備をするための練習をすることです。準備の過程で、馬の運動能力や旅程を学び、それらを採用する必要があることを学ぶことができますでござる。
ポイント4:馬の選択と対戦相手の選択を分析することです。馬の特性、旅程、ランニングスピードなど、マスターに適したものを選択することができますでござる。
ポイント5:自信を持って、よくマスターにある優勝を収めることができますでござる。
指定できるデータのフォーマットは以下にある。
以下の学習に対応している模様。
--trainer {default,dpo,sft,orpo,reward}
AutoTrain Advanced、ファインチューニング経験なくても、とても簡単にできる印象。GUIもあるみたい。