AI用語集|MCP・RAG・ファインチューニング など
AIまわりの基本用語をまとめています。今後も新しい用語を随時追加します。最新の用語は、リストの上に追加していきます。
バイブコーディング(Vibe Coding)
AI時代の開発スタイルを指す用語。モデル設計やデータ処理を理論的に最適化する前に「とりあえず動かしてみる」アプローチを指す。設計よりもAIやツールに指示を出し、生成結果を試しながら進める。仕様の整備よりも実装と検証を重視し、非エンジニアでもアプリやUIを構築できる柔軟なアプローチとして注目されている。
AIコーディング支援ツール(AI Coding Assistants)
AI技術を活用してプログラマーの開発を補助するツールの総称。自然言語による指示からコードを生成したり、既存コードの補完・修正・レビューを行えるのが特徴。IDEやCLIに統合され、関数単位の生成からリポジトリ全体の解析まで対応可能で、開発を一緒に進めるペアプログラマーのような役割も果たす。2025年8月現在、主なツールは以下の通り。
- OpenAI系:GPT-5 / Codex CLI / Cursor / GitHub Copilot
- Anthropic系:Claude Code(VS Code連携の拡張が提供されている)
- Google系:Gemini CLI
MCP(Model Context Protocol)
従来、AIモデルに文脈(コンテキスト)を与えるには、プロンプトにすべてを含める必要があった。MCPはアプリの状態やユーザーの目的などをプロンプトの外で共有する考え方。Anthropicが2024年に提案した、LLMなどのモデルとアプリケーションの間で文脈情報を構造的にやりとりするためのプロトコル。AIが「エージェント的な振る舞い」の基盤になると期待されている。
AIエージェント (AI Agent)
指示しなくても、自分で判断して動くAIプログラム。目的に向かって「何をやるか」をAIが決めて、タスクを実行する。エージェントには「知識」を持たせ、「タスクを実行させる仕組み」を作る必要がある。たとえば、誰かのレポートを書くAIエージェントなら、その人に関する情報をエージェントに持たせ、レポートの書き方を学習させる。RAGやファインチューニングを使って実現する。
チャットボット (Chatbot)
特定の話題について、自動で質問に答えたり、会話ができるAIプログラム。AIエージェントに似ているが、もっと汎用的に使う。
RAG (Retrieval-Augmented Generation)
データベースから情報を検索し、それをもとにAIが回答を生成する手法。 大規模言語モデル(LLM)の内部データではなく、主にVector Databaseなどの外部データベースから情報を探す仕組み。
ファインチューニング (Fine-tuning)
事前学習済みモデルに追加学習させ、特定のタスクや用途に最適化すること。モデルそのものに新しい知識やスキルを組み込む方法。たとえば既存の大規模言語モデル(LLM)に自分専用の知識を学習させることができる。
ベクターデータベース(Vector Database)
データをベクトル形式で保存・検索するデータベース。検索や類似した情報を見つけるために使われる。
学習 (Training)
モデルに大量のデータを使ってパターンやルールを学ばせること。これによって、大規模言語モデル(LLM)など、さまざまなAIモデルを作り上げる。
推論 (Inference)
学習(Training)やファインチューニングが終わったモデルを実際に使い、最適な答えを作り出すこと。会社でいえば、学習済みのモデルを活用して製品やサービスを提供する際に、この「推論 (Inference)」が必要になる。
エンベディング(Embedding)
AIが処理しやすい「数値のリスト(ベクトル)」に変換する技術。意味が近いものは、数値も近くなるように作られている。言語、画像、音声、動画など、さまざまなデータに使われる。
大規模言語モデル(LLM, Large Language Model)
大量のテキストデータで学習した、大規模な自然言語処理モデル。質問への回答、文章生成、要約など幅広いタスクに対応する。
Discussion