AI用語集|エージェント・RAG・ファインチューニング など
AIまわりの基本用語をまとめています。今後も新しい用語を随時追加します。最新の用語は、リストの上に追加していきます。
AIエージェント (AI Agent)
指示しなくても、自分で判断して動くAIプログラム。目的に向かって「何をやるか」をAIが決めて、タスクを実行する。エージェントには「知識」を持たせ、「タスクを実行させる仕組み」を作る必要がある。たとえば、誰かのレポートを書くAIエージェントなら、その人に関する情報をエージェントに持たせ、レポートの書き方を学習させる。RAGやファインチューニングを使って実現する。
チャットボット (Chatbot)
特定の話題について、自動で質問に答えたり、会話ができるAIプログラム。AIエージェントに似ているが、もっと汎用的に使う。
RAG (Retrieval-Augmented Generation)
データベースから情報を検索し、それをもとにAIが回答を生成する手法。 大規模言語モデル(LLM)の内部データではなく、主にVector Databaseなどの外部データベースから情報を探す仕組み。
ファインチューニング (Fine-tuning)
事前学習済みモデルに追加学習させ、特定のタスクや用途に最適化すること。モデルそのものに新しい知識やスキルを組み込む方法。たとえば既存の大規模言語モデル(LLM)に自分専用の知識を学習させることができる。
ベクターデータベース(Vector Database)
データをベクトル形式で保存・検索するデータベース。検索や類似した情報を見つけるために使われる。
学習 (Training)
モデルに大量のデータを使ってパターンやルールを学ばせること。これによって、大規模言語モデル(LLM)など、さまざまなAIモデルを作り上げる。
推論 (Inference)
学習(Training)やファインチューニングが終わったモデルを実際に使い、最適な答えを作り出すこと。会社でいえば、学習済みのモデルを活用して製品やサービスを提供する際に、この「推論 (Inference)」が必要になる。
エンベディング(Embedding)
AIが処理しやすい「数値のリスト(ベクトル)」に変換する技術。意味が近いものは、数値も近くなるように作られている。言語、画像、音声、動画など、さまざまなデータに使われる。
大規模言語モデル(LLM, Large Language Model)
大量のテキストデータで学習した、大規模な自然言語処理モデル。質問への回答、文章生成、要約など幅広いタスクに対応する。
Discussion