ã#çµ±èš01ãðéååž°åæã培åºè§£èª¬(åååž°ä¿æ°ãå¯äžçãFçµ±èšéããã³æ¯ãæšæºåæ®å·®ãæ¯ååž°ã®ä¿¡é Œåºéãäºæž¬åºé)
ãã®èšäºã§ã¯ãç®æ¬¡ã®å å®¹ã«æ²¿ã£ãŠãæå°äºä¹æ³ã«ããååž°ã¢ãã«ã®å°åºãããåååž°ä¿æ°ãååž°åæã«ããã説æå€åã®åè§£ãšå¯äžçãèªç±åºŠèª¿æŽæžã¿æ±ºå®ä¿æ°ãFçµ±èšéãå€éšå€æ°è¿œå æã®Fæ€å®ããããè¡åããã³æ¯ïŒã¬ãã¬ããžïŒãæšæºåæ®å·®ãæ¯ååž°ã®ä¿¡é Œåºéãšäºæž¬åºéã«ã€ããŠè§£èª¬ããŸãã
èšäºå 容ã¯ãå€å€éè§£ææ³å ¥é(æ°žç°éã»æ£è¿é 圊ãå ±è)ã®ç¬¬äºç« ãåèã«ããŠããŸãã
ãŸããããªããããã®ææ³ãå¿ èŠãªã®ã
-
ãã©ã¡ãŒã¿æšå®:
æå°äºä¹æ³ã¯ãã¢ãã«ã®ä¿æ°ïŒåååž°ä¿æ°ïŒãããŒã¿ããæããããã£ããããããã«æšå®ããåºæ¬çãªæ¹æ³ã§ããããã«ãããå説æå€æ°ãç®ç倿°ã«äžãã圱é¿ãå ·äœçã«çè§£ã§ããŸãã -
説æå€åã®åè§£ãšå¯äžç:
å šäœã®å€åïŒSSTïŒããã¢ãã«ã§èª¬æã§ããéšåïŒSSRïŒãšæ®å·®ïŒSSEïŒã«åããããšã§ãã©ããããã®å€åã説æãããŠãããïŒå¯äžçã ïŒãæããã«ãªããŸããR^2 -
èªç±åºŠèª¿æŽæžã¿æ±ºå®ä¿æ°:
説æå€æ°ã®æ°ãå¢ãããšç¡æ¡ä»¶ã« ãäžããåŸåããããããã¢ãã«ã®è€éãïŒãã©ã¡ãŒã¿æ°ïŒãè£æ£ããŠçã®èª¬æåãè©äŸ¡ããå¿ èŠããããŸããR^2 -
Fçµ±èšéãšFæ€å®:
å šäœãšããŠã¢ãã«ãææãããŸãã¯æ°ããªå€æ°ã远å ããããšã§èª¬æåãææã«æ¹åãããããæ€å®ããããã«ãFçµ±èšéããã®æ€å®ãçšããããŸãã -
ãããè¡åãšãã³æ¯ïŒã¬ãã¬ããžïŒ:
ãããè¡åã¯äºæž¬å€ãç®åºããéã«ãã¶ã€ã³è¡å ã®æ å ±ãåæ ããå¯Ÿè§æåïŒãã³æ¯ïŒããå芳枬ãã©ã®çšåºŠåœ±é¿åãæã€ãïŒå€ãå€ã®æ€åºãªã©ïŒãè©äŸ¡ã§ããŸããX -
æšæºåæ®å·®:
åèŠ³æž¬ã®æ®å·®ãããã®èŠ³æž¬ããšã«äºæ³ãããã°ãã€ãã§å²ãããšã§ãç°åžžãªæ®å·®ïŒå€ãå€ïŒãèå¥ããããããŸãã -
æ¯ååž°ã®ä¿¡é Œåºéãšäºæž¬åºé:
ãããã¯ãæšå®ãããååž°çŽç·ãããšã«ãæ¯éå£å¹³åã®ç¯å²ãæ°ããªèŠ³æž¬å€ãå ¥ãç¯å²ã瀺ãããšã§ãäºæž¬ã®äžç¢ºãããå®éçã«è©äŸ¡ã§ããŸãã
ãããã®ææ³ãçµ±åããããšã§ãåã«æé©ãªååž°çŽç·ãæ±ããã ãã§ãªããã¢ãã«ã®ä¿¡é Œæ§ãåããŒã¿ç¹ã®åœ±é¿åºŠãäžç¢ºå®æ§ã®è©äŸ¡ãŸã§ãããå®è·µçã§ä¿¡é Œæ§ã®ããè§£æãå¯èœã«ãªããŸãã
ã1. æå°äºä¹æ³ã«ããååž°ã¢ãã«ïŒåååž°ä¿æ°ã
ã¢ãã«ã®èšå®
éååž°ã¢ãã«ïŒ2 ã€ã®èª¬æå€æ°ãäŸã«ïŒã¯ãå芳枬
ãšæžããŸããè¡åã§è¡šããšã
ãšãªããŸããããã§ã
-
ã¯ç®ç倿°ã®ãã¯ãã«y -
ã¯èª¬æå€æ°ã䞊ã¹ãè¡åïŒ1 åç®ã¯ãã¹ãŠ 1 ã§åçãå«ãïŒX -
ã¯ååž°ä¿æ°ãã¯ãã«\beta (\beta_0, \beta_1, \beta_2)^\top
äºæž¬å€ãšæ®å·®
- äºæž¬å€
ã¯\hat{y}_i
- æ®å·®
ã¯e_i
è¡åã§æžããš
ã§ãã
äºä¹èª€å·®å (SSE) ã®æå°å
æ®å·®ãã¯ãã«
ãæå°ã«ããããã«
å°é¢æ°ã 0 ã«çœ®ã
ååž°ä¿æ°ã®è§£
ãæå°äºä¹æ³ã«ããæšå®è§£ãšãªããŸãã
y = b_0 + b_1 x ã§ã¯
[è£è¶³] åååž° -
å ±åæ£ (Cov(x, y))
-
ãy ãšã©ããããåæã«åãããç€ºãææšã§ããx - äŸïŒ
ãé«ããšãã«x ãé«ããy ãäœããšãã«x ãäœãå Žåãå ±åæ£ã¯æ£ã«ãªããŸããy - éã«ã
ãé«ããšãã«x ãäœãå Žåãå ±åæ£ã¯è² ã«ãªããŸããy
-
-
忣 (Var(x))
-
ã®å€ãå¹³åã®åšãã§ã©ãã ãæ£ãã°ã£ãŠãããïŒã°ãã€ããŠãããïŒã衚ããŸããx -
ã®å€ã®ã°ãã€ãã倧ããã»ã©ã忣ã¯å€§ãããªããŸããx
-
-
ã®æå³b_1 = \mathrm{Cov}(x, y)/\mathrm{Var}(x) -
ã¯ããb_1 ã 1 åäœå€åãããšãã«ãx ãã©ãã ãå€åããããã衚ãåŸãã§ããy - ååã®å
±åæ£ã倧ããïŒ
ãšx ã匷ãå調ããŠåãå Žåãy ã®å€åã«äŒŽãx ã倧ããåããããy ã¯å€§ãããªããŸããb_1 - 忝ã®åæ£ã¯ã
ã®ã°ãã€ãã®å€§ããã瀺ãã®ã§ãx ã®ã°ãã€ããå°ãããšãåãå ±åæ£ã§ãx ã¯å€§ãããªããŸããb_1 - ããããŠã
ã¯b_1 ã®ã°ãã€ãã«å¯Ÿããx ã®åæå€åã®å²åãšããŠè§£éã§ããŸããy
-
R^2 ) ã®å°åºã
ã2. ååž°åæã®èª¬æå€åã®å解㚠å¯äžç (å芳枬å€ã«ã€ããŠã
ãšè¡šããŸãã
ããã§ã
-
ã¯ç®ç倿°ã®å šäœã®åå·®y_i - \bar{y} -
ã¯ååž°ã¢ãã«ã説æã§ããå€åïŒèª¬æå€åïŒ\hat{y}_i - \bar{y} -
ã¯æ®å·®ïŒèª¬æã§ããªãã£ãå€åïŒy_i - \hat{y}_i
å šäœã®å€åïŒSSTïŒã¯ã
ãšæžããããã説æå€åïŒSSRïŒãšæ®å·®å€åïŒSSEïŒã«åè§£ãããŸãã
R^2 ) ã®å®çŸ©
決å®ä¿æ° (ãšå®çŸ©ãããã¢ãã«ãå
šäœã®å€åã®ãã¡ã©ãã ãã説æã§ããŠãããã瀺ããŸãã
ããã«ãããã¢ãã«ãå
šäœã®å€å (SST) ã®ãã¡ãã©ãã ãã説æïŒSSRïŒã§ãããããŸãã¯æ®å·®ã®å€å (SSE) ãã©ãã ãããããšã« å¯äžç ãèšç®ã§ããããšã瀺ãããŸãã
R^2 ïŒã®èª¬æã
ã3. èªç±åºŠèª¿æŽæžã¿æ±ºå®ä¿æ°ïŒAdjusted ååž°åæã§ã¯ã远å ã®èª¬æå€æ°ã«ãã
ããã§ã
-
: 芳枬æ°n -
: 説æå€æ°ã®æ°k -
ã¯1 - R^2 \mathrm{SSE} / \mathrm{SST}
ãã®åŒã¯ãã¢ãã«ã«å«ãŸãã倿°ã®æ°ã«å¿ããŠéå°é©åã®åœ±é¿ãè£æ£ããå®éã®èª¬æåãããæ£ç¢ºã«ç€ºããŸãã
[è£è¶³]
n - 1
芳枬å€ããå¹³å n ãæ±ãããšãããã¹ãŠã®å€ãèªç±ã«å€åã§ããããã§ã¯ãªããæåŸã® 1 ã€ã¯å¹³åãæºããããã«æ±ºãŸã£ãŠãããããèªç±åºŠã¯ \bar{y} ãšãªããŸãã n - 1 n - k - 1
éååž°ã¢ãã«ã§ã¯ã説æå€æ°åãšåçïŒ1 åïŒã®åèš k åã®ãã©ã¡ãŒã¿ãæšå®ããã®ã§ãæ®å·®ã®èªç±åºŠã¯ k+1 ãšãªããŸãã n - (k+1) = n - k - 1
ã4. F çµ±èšéã®èšç®åŒãšãã®æå³ã
åååž°ã»éååž°ã«ãããèšç®åŒã¯ã
ããã§ã
-
: 芳枬æ°n -
: 説æå€æ°ã®æ°k -
: 決å®ä¿æ°R^2
æå³
- ååã¯ã説æå€æ° 1 èªç±åºŠãããã®èª¬æãããå€åïŒSSRïŒã瀺ãã
- 忝ã¯ãæ®å·®ïŒèª¬æã§ããªãã£ãå€åïŒã® 1 èªç±åºŠãããã®å€åïŒSSEïŒã瀺ããŸãã
-
å€ã倧ããã»ã©ãã¢ãã«ãææã«F ã®å€åã説æããŠããããšã瀺ãããŸããy
x_1 ã®ã¿ã®ã¢ãã«ã« x_2 ã远å ããéã® F_0 å€ã®å°åºã
ã-
決å®ä¿æ°ã®å€å
-
åååž°ïŒ
ã®ã¿ïŒã®æ±ºå®ä¿æ°ïŒx_1 R^2_{\mathrm{reduced}} \approx 0.75 -
éååž°ïŒ
ãšx_1 ïŒã®æ±ºå®ä¿æ°ïŒx_2 R^2_{\mathrm{full}} \approx 0.79 -
远å ã«ããå¢åïŒ
\Delta R^2 = R^2_{\mathrm{full}} - R^2_{\mathrm{reduced}} = 0.04
-
-
å¢å F æ€å®ã®åŒ
ããã§ã
-
ïŒè¿œå ãã倿°æ°ïŒq = 1 -
ïŒèŠ³æž¬æ°ïŒn = 8 -
ïŒãã«ã¢ãã«ã®ãã©ã¡ãŒã¿æ°ïŒåçå«ãïŒp = 3
ã®èšç®F_0
ãã®
è£è¶³:
ã¢ãã«ã®èª¬æã§ããå€åïŒSSRïŒãšæ®å·®å€åïŒSSEïŒãçšããŠã> F = \frac{\bigl(\mathrm{SSR}_{\mathrm{full}} - \mathrm{SSR}_{\mathrm{reduced}}\bigr)/q}{\mathrm{SSE}_{\mathrm{full}}/(n-p)} > ãšãã圢ã§ã远å 倿°ã§èª¬æãããäœåãªå€åããæ®å·®å€åãšãã®èªç±åºŠã§æ£èŠåããŠæ¯èŒããŸãã
ã5. ãããè¡åã
ãããè¡å
ååž°çŽç·ã¯ã
ãšè¡šãããŸãã
ããã§ãæå°äºä¹æ³ã«ããæ±ããååž°ä¿æ°ã¯
ãšäžããããã®ã§ã
å®çŸ©
ããã§ã
圹å²
- å
¥åããã芳枬å€
ã«y ãããããšãäºæž¬å€H ãåŸãããŸãïŒ\hat{y}
-
ã®å¯Ÿè§æåH ã¯ãå芳枬h_i = H_{ii} ãäºæž¬å€ã«äžãã圱é¿ïŒãã³æ¯ãã¬ãã¬ããžïŒã衚ããŠãããå€ãå€ã®å€å®ã圱é¿ã®åŒ·ãç¹ã®è©äŸ¡ã«äœ¿ãããŸããi
æå³
ãããè¡åã¯ãååž°ã¢ãã«ãã©ã®ããã«ããŠããŒã¿ã®æ
å ±ãåã蟌ã¿ãäºæž¬ãäœãåºããã瀺ããçªãã®ãããªåœ¹å²ãæã£ãŠããŸãã
ãã¶ã€ã³è¡å
ã6. ãã³æ¯ïŒã¬ãã¬ããžïŒãïŒå€å€éã®å ŽåïŒ
ãã³æ¯ïŒã¬ãã¬ããžïŒã«ã€ããŠ
-
åå€éååž°ã®å Žå
ãã³æ¯ã¯æ¬¡ã®åŒã§èšç®ãããŸãïŒh_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_j (x_j - \bar{x})^2}. ããã¯ãå芳枬ã®
ã®å€ãå¹³åããã©ãã ãé¢ããŠãããã§ããã®ããŒã¿ç¹ãååž°çŽç·ã«äžãã圱é¿ã瀺ããŸããx -
å€å€éã®å Žå
è€æ°ã®èª¬æå€æ°ãããããã芳枬ããšã®ãå šäœçãªé¢ãå ·åããäžã€ã®å°ºåºŠã§ç€ºãå¿ èŠããããŸãã
ããã§çšããã®ã ããã©ããã¹è·é¢ ãšããææšã§ãã
å ·äœçã«ã¯ããããè¡å ã®å¯Ÿè§æåïŒãã³æ¯ïŒã¯H h_i = H_{ii} = \frac{1}{n} + (x_i - \bar{x})^\top S^{-1}(x_i - \bar{x}), ãšè¡šãããšãã§ããŸãã
ã¯ã芳枬(x_i - \bar{x})^\top S^{-1}(x_i - \bar{x}) ãšå šäœå¹³åx_i ã®ããã©ããã¹è·é¢ã®äºä¹ã«çžåœããŸããïŒããã§ã\bar{x} ã¯èª¬æå€æ°ã®å ±åæ£è¡åïŒS
ããã©ããã¹è·é¢ã«ã€ããŠ
-
å®çŸ©
芳枬 ã®èª¬æå€æ°ãã¯ãã«ãi ãå šäœã®å¹³åãx_i ãå ±åæ£è¡åã\bar{x} ãšãããšãS D_m(x_i) = \sqrt{(x_i - \bar{x})^\top S^{-1} (x_i - \bar{x})}. -
æå³
ããã©ããã¹è·é¢ã¯ãå倿°ã®ã°ãã€ããçžé¢ãèæ ®ã«å ¥ããäžã§ãããããŒã¿ç¹ãå šäœã®äžå¿ãããã©ãã ãé¢ããŠãããããæž¬ãææšã§ãã
ããã¯éåžžã®ãŠãŒã¯ãªããè·é¢ãšã¯ç°ãªãã倿°ã®å°ºåºŠãçžé¢æ§é ãè£æ£ããŠãããããå€å€éããŒã¿ã®ãç°åžžåºŠããã圱é¿åããè©äŸ¡ããã®ã«é©ããŠããŸãã
ãŸãšããšäœ¿ãæ¹
- åå€éã§ã¯ããã³æ¯ã¯åäžå€æ°ã®é¢ãå ·åããçŽæ¥èšç®ã§ããŸãã
- å€å€éã®å Žåã¯ãå芳枬ã®ãé¢ãå ·åããããã©ããã¹è·é¢ã§æž¬ãããã®äºä¹ãå ãã圢ã§
ãšæ±ããŸãã
- ããã«ãããå芳枬ãå šäœã®å¹³åïŒäžå¿ïŒããã©ãã ãé¢ããŠãããïŒåœ±é¿åïŒãå®éåã§ããå€ãå€ã圱é¿ã®åŒ·ãããŒã¿ç¹ãç¹å®ããã®ã«åœ¹ç«ã¡ãŸãã
èšç®æ¹æ³ïŒãããè¡åãçšããå ŽåïŒ
å芳枬
ããã§ã
-
æå³ã»äœ¿ãæ¹:
ãã³æ¯ ã¯ãåããŒã¿ç¹ã®èª¬æå€æ°ã®å€ãå šäœã®å¹³åããã©ãã ãé¢ããŠãããïŒã€ãŸãã©ãã ããç®ç«ã£ãŠããããïŒã瀺ããå€ã倧ããã»ã©ãã®èŠ³æž¬ç¹ã¯ååž°çµæã«å€§ããªåœ±é¿ïŒãåŒã£åŒµãåãïŒãäžããå¯èœæ§ããããããå€ãå€ã圱é¿ã®åŒ·ãç¹ãšããŠæ³šæãå¿ èŠã§ããh_i
ã7. æšæºåæ®å·®ã
èšç®æ¹æ³
æšæºåæ®å·®
ããã§ã
-
ã¯èŠ³æž¬e_i ã®æ®å·® (i )y_i - \hat{y}_i -
V_e = \frac{S_e}{(n - k - 1)} -
ã¯æ®å·®ã®åèšå¹³æ¹å (SSE)S_e -
ã¯å šèŠ³æž¬æ°ãn ã¯èª¬æå€æ°ã®æ°ïŒåçã¯å«ããªãïŒk
-
ãã®åŒã¯ã
æå³ã»äœ¿ãæ¹
-
ã¯ãèªç±åºŠV_e ã§è£æ£ãããæ®å·®ã®åæ£ïŒããªãã¡èª€å·®ã®å¹³åäºä¹èª€å·®ïŒã§ãããåèŠ³æž¬ã«æåŸ ããã誀差ã®å€§ããã瀺ããŸãã(n - k - 1) - æšæºåæ®å·®
ã«ãã£ãŠãåããŒã¿ã®æ®å·®ããéåžžã®ç¯å²ãããã©ãã ãå€ããŠããããæ¯èŒã§ããäžè¬ã«r_i ã 3 ã®å Žåã¯å€ãå€ã®çãããããŸãã|r_i| > 2
ã8. æ¯ååž°ã®ä¿¡é Œåºé vs. äºæž¬åºéã
æ¯ååž°ã®ä¿¡é Œåºé
- ããã¯ããã
ã«ããããå¹³åçãªïŒæ¯éå£ã®ïŒå¿çå€ãx_0 ãã©ã®ç¯å²ã«ãããã瀺ãåºéã§ãã\mu_0 - ååž°çŽç·ãè¡šãæ¯å¹³åïŒå¹³åå¿çïŒã«å¯Ÿããäžç¢ºããã衚ããŠãããããŒã¿ã®ã°ãã€ãããµã³ãã«ãµã€ãºã説æå€æ°ã®åœ±é¿ãèæ ®ããŠè©äŸ¡ãããŸãã
- æ°åŒã¯æ¬¡ã®ããã«ãªããŸãïŒ
ããã§,
-
ã¯\hat{y}_0 = x_0^\top \hat{\beta} ã«ãããäºæž¬å€x_0 -
ã¯æ®å·®æšæºèª€å·® (s )s^2 = \mathrm{SSE}/(n-p) -
ã¯èªç±åºŠt_{\alpha/2,\, n-p} ã®n-p ååžã®èšçå€t -
ã¯x_0^\top (X^\top X)^{-1} x_0 ã«ãããäºæž¬äžç¢ºãããåæ ããéšåã§ããx_0
ãã®åºéã¯ã
äºæž¬åºé
- ããã¯ããã
ã«ãããŠãæ°ãã«èŠ³æž¬ãããåã ã®x_0 ã®å€ãã©ã®ç¯å²ã«å ¥ããã瀺ãåºéã§ããy_0 - åã ã®èŠ³æž¬å€ã«ã¯åºæã®ã©ã³ãã ãªèª€å·®ïŒåäœå·®ïŒãå«ãŸãããããäºæž¬åºéã¯ä¿¡é ŒåºéãããåºããªããŸãã
- æ°åŒã¯æ¬¡ã®éãã§ãïŒ
ããã§ãã1ãã远å ãããŠããã®ã¯ãæ°ãã芳枬å€ãæã€æ¯å¹³åã®ã°ãã€ãã«å ããŠãåã ã®èª€å·®æåãåæ ããããã§ãã
éãã®ãŸãšã
-
ä¿¡é Œåºé:
ã«ãããæ¯éå£ã®å¹³åå¿çïŒæ¯ååž°ïŒãã©ã®ç¯å²ã«ãããã瀺ããx_0 -
äºæž¬åºé:
ã«ãããŠã次ã«èŠ³æž¬ãããåäžã®x_0 ã®å€ãã©ã®ç¯å²ã«å ¥ããã瀺ããy
äºæž¬åºéã¯ãåã ã®èŠ³æž¬ã®ã©ã³ãã 誀差ãå«ããããä¿¡é Œåºéããåºãã
ã9. t ååžã䜿ãçç±ã
-
æ¯åæ£ãäžæã§ãããã:
ã¢ãã«ã§ã¯èª€å·®é ã®åæ£ ã¯æªç¥ã§ãããã®ãããæ®å·®ããæšå®ããã\sigma^2 ã䜿çšããæšæºåçµ±èšéã¯èªç±åºŠs^2 ã®n-p ååžã«åŸããŸããt -
èªç±åºŠã®èª¿æŽ:
ãµã³ãã« \(n\) ãããååž°ã§æšå®ã«äœ¿ããããã©ã¡ãŒã¿ã®æ°ïŒäŸãã°ãåçãšèª¬æå€æ°ã®ä¿æ°ã®åèš ïŒãåŒããèªç±åºŠp ããèª€å·®åæ£ã®æšå®ã«çšãããããããåºéæšå®çã§n-p ã®ãããªt_{\alpha/2,\, n-p} ååžã®èšçå€ã䜿ããŸããt
ã10. äºæž¬å€ã®æšæºèª€å·®ã®èæ¯ã
ä»»æã®
\beta æšå®éã®åæ£
OLS æšå®éã®åæ£å ±åæ£è¡åã¯ã
\hat{y}_0 ã®åæ£
äºæž¬å€ ãã£ãŠãäºæž¬å€ã®æšæºèª€å·®ã¯
ãã®çµæãä»»æã®
以äžããæå°äºä¹æ³ã«ããååž°ã¢ãã«ã®å°åºãšãããã«é¢ããåºéæšå®ããããè¡åããã³æ¯ïŒã¬ãã¬ããžïŒãæšæºåæ®å·®ã®åºæ¬çãªè§£èª¬ãšãªããŸãã
ã11. å®è£ äŸã
ããŒã¿ã»ããã®äœæ
import numpy as np
import statsmodels.api as sm
import pandas as pd
# ãµã³ãã«ããŒã¿ã®å®çŸ©
x1 = np.array([12, 12, 11, 7, 8, 9, 14, 11])
x2 = np.array([4, 3, 3, 1, 3, 2, 5, 4])
y = np.array([22, 24, 21, 19, 19, 22, 24, 23])
# 説æå€æ°è¡å X ã®äœæïŒå®æ°é
ãå«ãïŒ
X = np.column_stack([np.ones(len(x1)), x1, x2])
éååž°ã¢ãã«ã®æšå®
# statsmodels ã®OLSã䜿çšããŠååž°åæ
model = sm.OLS(y, X).fit()
print(model.summary())
çµæ
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.785
Model: OLS Adj. R-squared: 0.699
Method: Least Squares F-statistic: 9.137
Date: Wed, 16 Apr 2025 Prob (F-statistic): 0.0214
Time: 19:05:34 Log-Likelihood: -10.139
No. Observations: 8 AIC: 26.28
Df Residuals: 5 BIC: 26.52
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 13.0140 2.192 5.938 0.002 7.380 18.648
x1 1.0058 0.347 2.903 0.034 0.115 1.897
x2 -0.5841 0.648 -0.902 0.409 -2.249 1.081
==============================================================================
Omnibus: 0.775 Durbin-Watson: 2.101
Prob(Omnibus): 0.679 Jarque-Bera (JB): 0.548
Skew: 0.146 Prob(JB): 0.760
Kurtosis: 1.751 Cond. No. 65.6
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
C:\ProgramData\anaconda3\Lib\site-packages\scipy\stats\_stats_py.py:1806: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=8
warnings.warn("kurtosistest only valid for n>=20 ... continuing "
ãããè¡åãšãã³æ¯ïŒã¬ãã¬ããžïŒã®èšç®
# ã¢ãã«ã®åœ±é¿åºŠè©äŸ¡ïŒãããè¡åã®å¯Ÿè§æåããã³æ¯ïŒ
influence = model.get_influence()
hat_values = influence.hat_matrix_diag
print("Hat Values (Leverage):")
print(hat_values)
çµæ
Hat Values (Leverage):
[0.19626168 0.42056075 0.17640187 0.54088785 0.6635514 0.25116822
0.47196262 0.27920561]
æšæºåæ®å·®ã®èšç®
# æšæºåæ®å·®ïŒåŠç忮差ãšãåŒã°ããïŒ
standardized_residuals = influence.resid_studentized_internal
print("Standardized Residuals:")
print(standardized_residuals)
çµæ
Standardized Residuals:
[-0.76722771 0.80759518 -1.34412552 -0.6392155 -0.48915467 1.17117341
-0.22185058 1.36336345]
ä»»æã®èŠ³æž¬å€ã«å¯Ÿããäºæž¬ãšåºéæšå®
# æ°ããªèŠ³æž¬å€ã®å®çŸ©ïŒå®æ°é
ãå«ãïŒ
x0 = np.array([1, 10, 3])
# äºæž¬ãšåºéæšå®
prediction = model.get_prediction(x0)
prediction_summary = prediction.summary_frame(alpha=0.05) # 95%ä¿¡é Œåºé
print("Prediction Summary for x0 = [10, 3]:")
print(prediction_summary)
çµæ
Prediction Summary for x0 = [10, 3]:
mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower \
0 21.320093 0.400144 20.29149 22.348697 18.34259
obs_ci_upper
0 24.297597
Discussion