🦙
簡単にLlama3.1をFine Tuningする
必要なパッケージをインストールします
%%capture
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
Unsloth初期化
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # 自動検出ではNoneです。 Float16はTesla T4、V100、Bfloat16はAmpere+用です
load_in_4bit = True # メモリ使用量を減らすには、4 ビット量子化を使用します。 False も可能。
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/Meta-Llama-3.1-8B",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
layers patch
model = FastLanguageModel.get_peft_model(
model,
r = 16, # 任意の数字 > 0 を選択します。推奨 8、16、32、64、128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0,
bias = "none",
use_gradient_checkpointing = "unsloth", # 「true」または「unsloth」は、非常に長い文脈のためです
random_state = 3407,
use_rslora = False,
loftq_config = None,
)
データセット取ってくる
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # EOS_TOKEN を追加する必要があります
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("yahma/alpaca-cleaned", split = "train") # 他のデータセットも可能です
dataset = dataset.map(formatting_prompts_func, batched = True,)
SFTTrainer
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
# num_train_epochs = 1、# これを 1をすると、完全なトレーニング実行に設定します。
max_steps = 60,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
)
現在のメモリの統計を表示
#@title 現在のメモリの統計を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
Train!!
trainer_stats = trainer.train()
最終的なメモリと時刻の統計情報を表示
#@title 最終的なメモリと時刻の統計情報を表示
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory /max_memory*100, 3)
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
model作る
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # 命令
"1, 1, 2, 3, 5, 8", # input
"", # Output - 生成のために空白のままにしておいてください!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # 命令
"1, 1, 2, 3, 5, 8", # input
"", # Output - 生成のために空白のままにしておいてください!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
ローカル保存
model.save_pretrained("lora_model")
tokenizer.save_pretrained("lora_model")
オンライン保存
model.push_to_hub("UserName/lora_model", token = "YOUR_TOKEN")
tokenizer.push_to_hub("UserName/lora_model", token = "YOUR_TOKEN")
Discussion