💭
Phi-3 miniをllama.cppでRaspberry Pi 4上で動かしてみる
はじめに
Phi-3 mini どこまで動くかシリーズ。今回はllama.cppを使ってRaspberry Pi 4上で動かしてみました。
環境
Raspberry Pi 4B
- CPU: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC 1.5GHz
- Memory: 8GB
- SDD: 16GB
- OS: Ubuntu Server 22.04.5 LTS (64-bit) Jammy
llama.cppをビルドする
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
mkdir build && cd $_
cmake ..
cmake --build . --config Release
...
[ 96%] Built target server
[ 97%] Building CXX object examples/export-lora/CMakeFiles/export-lora.dir/export-lora.cpp.o
[ 97%] Linking CXX executable ../../bin/export-lora
[ 97%] Built target export-lora
[ 98%] Building CXX object pocs/vdot/CMakeFiles/vdot.dir/vdot.cpp.o
[ 99%] Linking CXX executable ../../bin/vdot
[ 99%] Built target vdot
[ 99%] Building CXX object pocs/vdot/CMakeFiles/q8dot.dir/q8dot.cpp.o
[100%] Linking CXX executable ../../bin/q8dot
[100%] Built target q8dot
100%になったらビルド完了です。llama.cppのルートディrクトリにbin/main
をコピーしてからPhi-3-mini-4k-instruct-q4.gguf
をダウンロードします。
cd ..
cp ./build/bin/main ./
wget https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf
実行する
./main -m Phi-3-mini-4k-instruct-q4.gguf -p "<|system|>\nYou are a helpful AI assistant.<|end|>\n<|user|>\nカレーライスとは何ですか?100字以内で簡潔に説明してください。<|end|>\n<|assistant|>"
Log start
main: build = 2755 (e00b4a8f)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
main: seed = 1714392724
llama_model_loader: loaded meta data with 25 key-value pairs and 291 tensors from Phi-3-mini-4k-instruct-q4.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.vocab_size u32 = 32064
llama_model_loader: - kv 3: llama.context_length u32 = 4096
llama_model_loader: - kv 4: llama.embedding_length u32 = 3072
llama_model_loader: - kv 5: llama.block_count u32 = 32
llama_model_loader: - kv 6: llama.feed_forward_length u32 = 8192
llama_model_loader: - kv 7: llama.rope.dimension_count u32 = 96
llama_model_loader: - kv 8: llama.attention.head_count u32 = 32
llama_model_loader: - kv 9: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 10: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 11: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 12: general.file_type u32 = 15
llama_model_loader: - kv 13: tokenizer.ggml.model str = llama
llama_model_loader: - kv 14: tokenizer.ggml.tokens arr[str,32064] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 15: tokenizer.ggml.scores arr[f32,32064] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,32064] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 32000
llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 32000
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special tokens definition check successful ( 323/32064 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32064
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 3072
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 96
llm_load_print_meta: n_embd_head_k = 96
llm_load_print_meta: n_embd_head_v = 96
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 3072
llm_load_print_meta: n_embd_v_gqa = 3072
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8192
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 3.82 B
llm_load_print_meta: model size = 2.16 GiB (4.85 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 32000 '<|endoftext|>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 32000 '<|endoftext|>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOT token = 32007 '<|end|>'
llm_load_tensors: ggml ctx size = 0.15 MiB
llm_load_tensors: CPU buffer size = 2210.78 MiB
.................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 192.00 MiB
llama_new_context_with_model: KV self size = 192.00 MiB, K (f16): 96.00 MiB, V (f16): 96.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: CPU compute buffer size = 68.63 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 1
system_info: n_threads = 4 / 4 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 | LAMMAFILE = 1 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
generate: n_ctx = 512, n_batch = 2048, n_predict = -1, n_keep = 1
<s><|system|>\nYou are a helpful AI assistant.<|end|>\n<|user|>\nカレーライスとは何ですか?100字以内で 簡潔に説明してください。<|end|>\n<|assistant|> \カレーライスは、煮込んだカレーと炒めた豆腐や野菜を盛り 合わせた料理です。カレーが盛りつけ、豆腐や野菜に火がつくことで独特な味わいが生まれます。
(Note: The response is within the 100-character limit, which includes spaces.)<|end|> [end of text]
llama_print_timings: load time = 2684.24 ms
llama_print_timings: sample time = 11.09 ms / 118 runs ( 0.09 ms per token, 10637.34 tokens per second)
llama_print_timings: prompt eval time = 20474.58 ms / 60 tokens ( 341.24 ms per token, 2.93 tokens per second)
llama_print_timings: eval time = 81558.43 ms / 117 runs ( 697.08 ms per token, 1.43 tokens per second)
llama_print_timings: total time = 102104.14 ms / 177 tokens
Log end
回答は以下。
カレーライスは、煮込んだカレーと炒めた豆腐や野菜を盛り 合わせた料理です。カレーが盛りつけ、豆腐や野菜に火がつくことで独特な味わいが生まれます。
(Note: The response is within the 100-character limit, which includes spaces.)<|end|> [end of text]
生成完了までは102秒かかりました。実行時のCPU使用率は98~99%でした。さすがにCPUフル稼働なのでかなり熱くなります。
watch -n 2 vcgencmd measure_temp
Every 2.0s: vcgencmd measure_temp raspberrypi: Mon Apr 29 21:31:20 2024
temp=80.8'C
おわりに
実用的な速度ではないけど動くことは動きます。やはりこれだけ軽量でまともに日本語が扱えるLLMというところにロマンがありますね。
Discussion